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Abstract

Weintroduce themodel of BCS theory for superconductivity anddiscuss the assumptionsmade.

We show thatminimisers of the BCS functional exist and satisfy the BCS gap equation. Next, we

show that, under suitably condition, the critical temperature is exponentially small in both the

couplingand thedensity. Further,weshowthat theassociatedenergygap is exponentially small

inboth the coupling and thedensity, and that the ratio of the critical temperature and the energy

gap tends to the same universal constant in both the weak coupling and the low density limits.

Subsequently, we show that the assumptions made in setting up the model are very good for

short-range potentials. Finally, we investigate the systemwith amore general interaction term.

Here we show that minimisers exist and satisfy the BCS gap equation.
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1 Introduction

Superconductivity is a physical phenomenon observed in certain materials for temperatures below

some critical value Tc. It was first seen experimentally by K. Onnes in 1911, for mercury at very cold

temperatures, see [24] for the history of this discovery. Such a superconducting material has many

interesting properties. Two of the main ones are that the material can conduct electricity with zero

resistivity and that it exhibits a Meissner effect of being a perfect diamagnet. Thus, it repels any

magnetic field, and the field-lines go around the superconductor. These effects are not unlimited,

meaning that if the current ormagnetic field are sufficiently strong theywill break the superconduc-

tor.

For the theoretical explanation for superconductivity there are twomain theories, theGinzburg-

Landau theory and the BCS theory. The Ginzburg-Landau theory for superconductivity is a phe-

nomenological theory developed in 1950 where superconductivity is described in terms of some

macroscopicwavefunctionψminimisingacertain functional called theGinzburg-Landau functional.

For temperaturesT > Tc above the critical temperature, ψ ≡ 0 is zero, but for temperaturesT < Tc
below the critical temperature ψ . 0 is non-zero. This means that there is some long-range coher-

ence of the system. The physical interpretation of ψ is however not given in Ginzburg-Landau the-

ory. This came with BCS theory, where it is a sort of wavefunction of Cooper-pairs, see for instance

[3, Chapter 5].

In this thesis we will not go much into detail about Ginzburg-Landau theory. We will instead

focus on the BCS theory of superconductivity and briefly discuss the link between the two.

The BCS theory of superconductivity was introduced by Bardeen, Cooper and Schrieffer in 1957

in [4] as a microscopic theory of superconductivity. The central part of BCS theory is that super-

conductivity is caused by a condensation of Cooper pairs. A Cooper pair is a pair of electrons with

opposite momenta and spins. Such a pair of electrons behave like a bosonic particle, and so such a

condensation is possible. These Cooper-pairs are the charge-carriers. They carry the current in the

superconductor.

The BCS theory is also useful in describing superfluidity, see [21]. Part of themore recent interest

in BCS theory stems from this additional usage of the theory. For neutral atoms, one should really

talk about a superfluid state and not a superconducting state, since the atoms are neutral, so they do

not conduct. The important settinghere is thatof cold fermionicgases, see for instance the references

in [9].

We will not go into much details in setting up BCS theory for superfluidity in such Fermionic

gases. We will describe the setup of BCS theory for superconductivity. In this case the particles of

interest are electrons. Thereafter, onemay equallywell state all the theorems in the thesis for super-

fluidity instead of for superconductivity. Wewill not do this explicitly for the sake of coherence, but

one really should change this for the setting of cold neutral fermionic atoms.

Some of the main parts of setting up the model of BCS is to consider what the interaction be-

tween the electrons looks like. Firstly there is of course the repulsive (screened) Coulomb interac-

tion. However, in a crystal we also have the phonons, i.e. lattice vibrations. These can interact with

the electrons and give rise to an effective electron-electron interaction, when we “integrate out the

phonons”. This will be some complicated interaction, which we do not know the looks of. We will

model it by some potentialV . For the most part, namely in sections 2 to 6 we will assume this to be

amultiplication operator in the sense described in those sections.

For the material to be superconducting we need the effective potential V to be sufficiently at-

tractive. This mean that the effective phonon interaction is sufficiently strong in comparison to the

(screened) Coulomb interaction. In the physics literature one can find the following explanation

that renders this fact probable, see [2, p. 266]. The timescale for the electronsmovement past an ion
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1 INTRODUCTION

in the crystal lattice is much shorter than the relaxation time for the displacement of the ion. Thus

an electron moving past the ion can distort the ion and displace it for a timescale of the relaxation

time. Another electron moving past shortly after will thus be affected by the slightly changed ion

potential. The ion will not recover to its equilibrium position until after it has been left alone for a

timescale of the relaxation time. This gives some intuition for how the phonons lead to an attractive

effective electron-electron interaction. This effective interaction is difficult to quantise. This is why

wemodel it by some potential.

One key thing to note here, is that the BCS theory for superconductivity only really describe type

I superconductors. Themore recently (meaning in the last 30-some years) discovered high temper-

ature (type II) superconductors appear not to be well described by BCS theory. High temperature

superconductivity is not fully understood. See for instance [2, 3] formore about this and the physics

of BCS and Ginzburg-Landau theory.

In this thesis we will not discuss these various properties of superconductors. Our focus will

instead mostly be two-fold. Firstly on developing asymptotic formulas for the critical temperature

and the energy gap in different limits, and secondly on the validity of some of the assumptionsmade

in setting up the BCS model. We will not follow BCS’s original article or the more modern methods

discussed in the physics literature. We will instead go forth more mathematically rigorous and fol-

low the setup of themodel and presentationmade in [6, 9, 13–16]. This variational approach gives a

linear criterion for the critical temperature, in the sense that it is characterised by a certain operator

having nonegative eigenvalues. The benefit of thismore rigorous approach is that the conditions for

different results to hold are muchmore clear.

We now describe the structure of the thesis.

Firstly, in section 2 we will setup the model of writing down the pressure functional associated

to the grand canonical potential, that our system should minimise. In doing this we discuss the key

assumptions needed to do this. The assumptionsmade are very clearlymotivated by BCS theory [4],

and we will discuss what the existence of Cooper-pairs means in our formalism. The existence of

such will be our definition for a system being superconducting, motivated again by BCS theory.

Then, we will in section 3 show that minimisers exist for our functional, and that they satisfy

an Euler-Lagrange equation, which in this setting is called the BCS gap equation, due to its link to

an energy gap. We prove this BCS gap equation with much more detail than the source material

[15], where the proof is prettymuch only a sketch. This BCS gap equation is an important part of the

linear criterion for the critical temperature discussed above. It is this linear criterion, thatwewill use

extensively in section 4 to get formulas for the critical temperature. This section is based on [15, 16].

Thirdly, in section 4 we will consider the critical temperature, belowwhich the system is super-

conducting. We will develop formulas for this critical temperature in different limits. Firstly, we

will consider the limit of aweak coupling, and calculate how the critical temperature behaves in this

limit. Here theweak couplingwillmean that both the electron-electron interaction and thephonon-

interaction are weak. Secondly, we will consider the limit of a low density. This is described as the

limitwhere the chemical potential is small. Our results here agreewithwhat is known in the physics

literature. This section is based on [9, 13, 14].

Subsequently, in section 5 we consider the energy gap associated to a system. This energy gap

arises as the energy gap in the dispersion relation of certain quasi-particles, in some approximate

Hamiltonian. The physics of this is discussed in [2, p. 270-276]. First, we prove that for the limit of

weak coupling this energy gap is exponentially small in the coupling. Moreover, it is even exponen-

tially small the sameway as the critical temperature is in this limit, and thus we show that the ratio

of this energy gap to the critical temperature tends to some universal constant independent of both

the potential and the chemical potential. Secondly, we show the new result that in the low density

limit the energy gap is exponentially small and that the ratio of the energy gap to the critical tem-
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perature tends to the same universal constant as in theweak coupling limit. This section is based on

[13] (for the weak coupling limit) andmy ownwork (for the low density limit).

Next, in section 6 we will discuss the validity of some of the assumption made in section 2. In

setting up the model the interaction energy will be split in three terms, two of which we neglect in

the setup of themodel. In this sectionwewill include these terms and domuch of the same analysis

as we did in section 3. We will see that the assumption of neglecting the two terms is very good for

short-range potentials. Including these terms only lead to a sort of renormalisation of the chemical

potential. This means that some of the asymptotic results from section 4 still hold for this more

correctmodel wherewe include these terms. Many of themethods used in this section are the same

as in section 4. This section is based on [6].

Then, in section 7 we will consider the model where we no longer assume that the interaction

V is given by a multiplication operator. We will discuss what can be done in such a more general

case, where V is a more general type of operator. Here we will develop many of the same technical

results needed for the proofs of the previous sections towork. This section is based onmyownwork,

partially generalising technical results in [19].

Finally, in section 8we briefly discuss themodelwhere external fields are included. Herewe give

an overview of the link between BCS theory and Ginzburg-Landau theory.

2 Setup of theModel

In this section wewill describe themodel that we consider and all the assumptions wemake in set-

ting up the model. We will for simplicity work in units where ~ = kB = 2m = 1. This section is

based on [15].

In quantummechanics, the state of a particle is given by itswavefunction, which is a normalised

element in someHilbert space. Wewill denote byH the Hilbert space of such allowed one-particles

states. For a spin-1
2 Fermion (for instance an electron) confined to a box Λ ⊂ R3 we would have

H = L2(Λ,C2), where theC2-part is the spin.
We are interested in Fermions (for instance electrons), so, for a many-particle system, we need

the wavefunction to be anti-symmetric in exchanging the particles, this means that the state of a

system is given by some element in the Fock-space FH :=
⊕∞

n=0
∧n H . The n’th component here

is the space of n-particle anti-symmetric wavefunctions, i.e. that of allowed n-particle states. An
orthonormal basis for the Fock space is given by the Slater determinants

ϕ1 ∧ · · · ∧ ϕn := 1
√

n!

∑
σ∈Sn

sgnσ ϕσ(1) ⊗ · · · ⊗ ϕσ(n),

where the set {ϕi}i∈N form an orthonormal basis for H . The normalisation is chosen so that the

inner product is the usual one on L2(R3n). The 0’th component
∧0 H = CΩ represents the vacuum,

i.e. Ω is the vacuum state, without any particles.

In order towrite down the energy and other related quantities, weneed to introduce the creation

and annihilation operators. The creation operators c†(φ) : FH → FH are given by

c†(φ)(ψ1 ∧ · · · ∧ ψn) = φ ∧ ψ1 ∧ · · · ∧ ψn, c†(φ)Ω = φ.

The annihilation operators are their adjoints. They are given by

c(φ)(ψ1 ∧ · · · ∧ ψn) =

n∑
i=1

(−1)i−1 〈φ|ψi〉 ψ1 ∧ · · · ∧ ψi−1 ∧ ψi+1 ∧ · · · ∧ ψn, c(φ)Ω = 0
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2 SETUP OF THEMODEL

They satisfy the canonical anti-commutation relations

{c(φ), c†(ψ)} = 〈φ|ψ〉 , {c(φ), c(ψ)} = 0.

Thewaywewill characterise a state is not through an element of the Fock space, but rather through

the use of density-matrices. Given a state Ψ ∈ FH , then the associated density matrix |Ψ〉 〈Ψ| is

the projection onto the subspace spanned byΨ. Wewill refer to this densitymatrix also as the state.

Any convex combination of such states
∑

i λi |Ψi〉 〈Ψi | will again be a state, now just not a pure state.

In general we have the following defining properties of a state ρ

ρ : FH → FH , 0 ≤ ρ ≤ 1, Tr ρ = 1.

The expectation of some observable A (i.e. a self-adjoint operator) is then 〈A〉 ρ = Tr Aρ.
The energy of system is given by the Hamiltonian

H =
∑
j,k

Tj,kc†j ck +
1
2

∑
i,j,k,l

Vi j klc
†

i c†j clck,

where c†j = c†(ϕ j) and c j = c(ϕ j). The one-particle part of the energyT is given by

Tj k =
〈
ϕ j

��(−i∇ + A)2 +W
��ϕk

〉
,

whereW is the external potential and A is the vector potential. The second term is the energy from

the two-particle interaction. It is given by

Vi j kl =
〈
ϕi(x) ⊗ ϕ j(y)

��V(x − y)
��ϕk(x) ⊗ ϕl(y)

〉
.

The number operator, counting the number of particles in a state, is given by N =
∑

j c†j c j . Note

that theHamiltonian given above preserves the number of particles. Wewill treat the systemgrand-

canonically, that is, nothavingafixednumberofparticles, but instead letting thenumberofparticles

vary. Then the state of our system shouldminimise the pressure functional

F (ρ) = Tr[(H − µN)ρ] − TS(ρ),

where µ ∈ R is the chemical potential, T ≥ 0 is the temperature, and S(ρ) = −Tr(ρ log ρ) is the
von-Neumann entropy.

Finding this minimum is too hard. Instead we will restrict to the set of quasi-free states. These

we will not define properly, we refer to [23, chap. 10] for a definition. What is usually done in the

physics literature is that one approximates the Hamiltonian with a simpler one, and work with that

instead. Theminimisers of such an approximate Hamiltonian are quasi-free, see [23, chap. 13].

One key property, that quasi-free states have is the following. (One may take this as the defini-

tion, if one so desires.)

Theorem 2.1 (Wick’s Theorem, [23, Thm. 10.2]). A quasi-free state ρ on FH satisfies that, for all n,〈
c#

1 · · · c#
2n

〉
ρ
=

∑
σ∈S′

2n

sgnσ
〈
c#
σ(1)c

#
σ(2)

〉
ρ
· · ·

〈
c#
σ(2n−1)c

#
σ(2n)

〉
ρ
,〈

c#
1 · · · c#

2n+1

〉
ρ
= 0,

where c#
j is either c j or c†j and S′2n ⊂ S2n is the subset of permutations σ, with σ(1) < σ(3) < · · · <

σ(2n − 1) andσ(2 j − 1) < σ(2 j) for all 1 ≤ j ≤ n.

6



From now on ρwill always denote a quasi-free state. Computing the expected value of the energy

we then have

〈H〉 ρ =
∑
j,k

Tj k

〈
c†j ck

〉
ρ
+

1
2

∑
i,j,k,l

Vi j kl

(〈
c†i c†j

〉
ρ
〈clck〉 ρ −

〈
c†i cl

〉
ρ

〈
c†j ck

〉
ρ
+

〈
c†i ck

〉
ρ

〈
c†j cl

〉
ρ

)
.

These 3 terms in the interaction term are referred to as the pairing, the exchange, and the direct term

respectively.

Since all expectations can be expressed in terms of two-particle expectations, one would expect

that we can somehow encode the information of ρ in a “two-particle state” Γ : H ⊕H → H ⊕H .

This is indeed true. Given ρwe define Γ by

〈φ1, φ2 |Γ|ψ1,ψ2〉 =
〈
[c†(ψ1) + c(ψ2)][c(φ1) + c†(φ2)]

〉
ρ

Such a Γ is called a generalised one-particle density matrix. Note that Γ can be written in terms of

γ,α : H → H given by

〈φ|γψ〉 =
〈
c†(ψ)c(φ)

〉
ρ
,

〈
φ
��αψ〉

= 〈c(ψ)c(φ)〉 ρ .

Then

Γ =

(
γ α

α† 1 − γ

)
.

Here γ is defined by γψ = γψ.
For the quasi-free pure states, meaning that they have rank 1, we can classify the operators Γ.

Proposition 2.2 ([23, Thm. 10.4]). There is a bijective correspondence between the set of quasi-free pure

states ρ and the set of selfadjoint Γ of the form

Γ = Γ2, Γ =

(
γ α

α† 1 − γ

)
, γ trace-class

satisfying 0 ≤ Γ ≤ 1.

Remark 2.3. That Γ uniquely identifies ρ is easy to see, this even holds for any quasi-free state.

All thismotivateswhywemay just consider the generalised one-particle densitymatrices and forget

about the associated state ρ.
We can rewrite 〈H〉 ρ in terms of Γ defined above. Wewant to rewrite this as something simpler.

In order to do this, we restrict to the case of spin-1
2 particles (for instance electrons) in a box, i.e.

H = L2(Λ,C2) for a boxΛ = [0, L]3. Then an orthonormal basis is given by ϕk,σ = L−3/2eik x |σ〉 ,
where k ∈ 2π

L Z
3 and σ ∈ {↑,↓} is the spin. For the sake of simplifying notation we write |k,σ〉 for

this state. Introduce the kernels γσ,τ and ασ,τ by〈
c†l,τck,σ

〉
ρ
=

1
|Λ|

∬
Λ×Λ

e−ik xγσ,τ(x, y)eily dy dx,〈
cl,τck,σ

〉
ρ
=

1
|Λ|

∬
Λ×Λ

e−ik xασ,τ(x, y)e−ily dy dx

for k, l ∈ 2π
L Z

3 and σ,τ ∈ {↑,↓}. Note that exchanging k ↔ l, τ ↔ σ and x ↔ y we get that

ασ,τ(x, y) = −ατ,σ(y, x). Similarly γσ,τ(x, y) = γτ,σ(y, x). Also〈
c†l,τc†k,σ

〉
ρ
=

〈
ck,σcl,τ

〉
ρ
=

1
|Λ|

∬
Λ×Λ

eil xατ,σ(x, y)eiky dy dx.
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2 SETUP OF THEMODEL

Thus thinking of the kernel ασ,τ as a two-particle wavefunction we have〈
cl,τck,σ

〉
ρ
=

〈
k, l

��ασ,τ〉 〈
c†l,τc†k,σ

〉
ρ
=

〈
ατ,σ

��l, k〉
where these inner products are taken in the reduced space, L2(Λ)⊗2, wherewe forget about the spin.

Wewill in the following often do this. It will be clear from the context when.

Now, the potential is independent from the spin. Thus, the pairing term becomes

1
2

∑
k,k ′,l,l ′
σ,σ′,τ,τ′

〈(l, τ), (k,σ)|V | (k′,σ′), (l′, τ′)〉
〈
c†l,τc†k,σ

〉
ρ

〈
cl ′,τ′ck ′,σ′

〉
ρ

=
1
2

∑
k,k ′,l,l ′
σ,σ′,τ,τ′

〈l, k |V |k′, l′〉 δτ,σ′δσ,τ′
〈
ατ,σ

��l, k〉 〈
k′, l′

��ασ′,τ′
〉

=
1
2
∑
σ,τ

∬
Λ×Λ

V(x − y)|ατ,σ(x, y)|2 dy dx.

For the direct and exchange termwe similarly get

1
2
∑
σ,τ

∬
Λ×Λ

V(x − y)γτ,τ(x, x)γσ,σ(y, y) dx dy and −
1
2
∑
σ,τ

∬
Λ×Λ

|γσ,τ(x, y)|2V(x − y) dx dy

respectively, using that γσ,τ(x, y) = γτ,σ(y, x). In total we thus have

〈H〉 ρ = Tr
[
((−i∇ + A)2 +W)γ

]
+

1
2
∑
σ,τ

∬
Λ×Λ

|ασ,τ(x, y)|2V(x − y) dx dy

−
1
2
∑
σ,τ

∬
Λ×Λ

|γσ,τ(x, y)|2V(x − y) dx dy

+
1
2
∑
σ,τ

∬
Λ×Λ

γσ,σ(x, x)γτ,τ(y, y)V(x − y) dx dy.

We now restrict to SU(2)-invariant states. To define this, let S ∈ SU(2). Then as explained in [15,

Appendix 2] S defines a Bogoliubov transformationWS with

WSc†(ψ)W†

S = c†(Sψ), WSc(ψ)W†

S = c(Sψ),

where S acts pointwise on the spin-part. A state ρ is then SU(2)-invariant if〈
WS AW†

S

〉
ρ
= 〈A〉 ρ

for any operator A. This implies that

S†γS = γ, S†αS = α

for all S ∈ SU(2). If one desires, onemay just take this as the definition instead.

That a state is SU(2)-invariant is physically that there is no preferred direction for the spin. This
is a reasonable assumption for the case where we have no external fields. For the case where we
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do have a preferred direction, say if there is an external magnetic field, where we have the Zeeman

splitting [5, sect. 1.3] we will still have this assumption, i.e. we assume that the energy difference in

the Zeeman splitting is very small. This setting is discussed in section 8.

Onemay then check, that SU(2)-invariance implies that

γν,τ(x, y) = γ(x, y)δν,τ, αν,τ(x, y) = α(x, y)σ
y
ν,τ

where σy =

(
0 −i
i 0

)
is the second Pauli-matrix and where α and γ are now kernels of operators

on the reduced space L2(Λ). Note that α is symmetric, meaning α(x, y) = α(y, x), and that γ is

self-adjoint, meaning γ(x, y) = γ(y, x). We again combine these to a matrix (of operators)

Γ =

(
γ α
α 1 − γ

)
.

Note that by the symmetry of α we have α = α†. Plugging this into the expression for the energy

above we get

〈H − µN〉 ρ − TS(ρ) = 2 Tr[((−i∇ + A)2 − µ +W)γ] − 2TS(Γ)

+

∬
Λ×Λ

|α(x, y)|2V(x − y) dx dy

−

∬
Λ×Λ

|γ(x, y)|2V(x − y) dx dy

+2
∬
Λ×Λ

γ(x, x)γ(y, y)V(x − y) dx dy.

Here we have used that S(ρ) = 2S(Γ), where the factor of 2 comes from the spin. This is [15, Lem.

A.1]. Omitting the direct and exchange term, replacingV by 2V and dividing out by 2we get

F (Γ) = Tr
[
((−i∇ + A)2 − µ +W)γ

]
− TS(Γ) +

∬
Λ×Λ

|α(x, y)|2V(x − y) dx dy. (2.1)

Omitting these terms ismotivatedby thephysics of BCS theory. (TheCooper-pairs are the important

part.) Below,wediscusshowα is related to theCooper-pairs, and sowhy thepairing term is the term

related to theCooper-pairs. Mathematically, this simplification is justifiedby the results in section6.

There we show that for short-range potentials the inclusion of these terms in some sense only lead

to a renormalisation of the chemical potential. The details are discussed in section 6.

We now consider the case with absent external fields A andW . In this setting wemoreover only

consider translation-invariant states, i.e. with

α(x, y) = α(x − y) γ(x, y) = γ(x − y).

This ismotivatedby therebeingnoapriori physical reason toprefer somepart of configuration space

over another. Mathematically it is justified in [15, sect. F], where the model is shown to have its

minimum in a translation-invariant state.

Expressing these in terms of their Fourier transforms,

α(x − y) =
1

(2π)3/2

∫
α̂(p)eip(x−y) dp, γ(x − y) =

1
(2π)3/2

∫
γ̂(p)eip(x−y) dp,

9



3 PRELIMINARY ANALYSIS

and doing a formal infinite volume expansion we get that the energy density is [15]

F (Γ) =

∫
(p2 − µ)γ(p) dp +

∫
|α(x)|2V(x) dx + T

∫
Tr[Γ(p) log Γ(p)] dp, (2.2)

where we have introduced

Γ(p) =
(
γ(p) α̂(p)
α̂(p) 1 − γ(−p)

)
Note that α̂(−p) = α̂(p). This is a slight abuse of notation. This should really have been denoted Γ̂,

and γ̂ but we will not deal with the original Γ and γ again, so there is no problem. The last term is

the entropy S(Γ) = −
∫

Tr[Γ(p) log Γ(p)] dp.

Remark 2.4. For the function α here, we can heuristically see it as the expectation of the Cooper-

pair with that momentum. The SU(2)-invariance dictates that α on the spin-part is off-diagonal,

meaning that it only measures pairs of particles with opposite spins. Formally〈
cp↑c−p↓

〉
ρ
∼

1
|Λ|

∬
eipxe−ipyα(x, y) dx dy ∼ α̂(p).

This motivates why we should call α the Cooper-pair wavefunction. It also motives the following

definition.

Definition 2.5. We say that a system is superconducting if, for the minimising Γ = (γ,α)we have

α . 0.

Not to worry whether such a minimiser exists, we show that in theorem 3.1 below. In BCS-theory,

superconductivity is explained as the existence of such Cooper-pairs. Thus, motivated by this, we

use the definition of superconductivity stated above.

3 Preliminary Analysis

We now begin our analysis of the model. We show that indeed, minimisers exist and that the crit-

ical temperature is described by a certain operator having 0 as its lowest eigenvalue. First, for the

existence of minimisers.

3.1 Existence ofMinimisers

In this section we show that the BCS functional is bounded from below and attains its minimum.

This means that out definition of superconductivity is sensible. This section is based on [15, 16].

Theorem 3.1.Define the setD by

D =

{
Γ(p) =

(
γ(p) α̂(p)
α̂(p) 1 − γ(−p)

)
: α ∈ H1 (

R3) , γ ∈ L1 (
R3, (1 + p2) dp

)
,0 ≤ Γ ≤ 1

}
.

Let µ ∈ R, let 0 ≤ T < ∞, and let V ∈ L3/2 be real-valued and reflection-symmetric, meaning that

V(x) = V(−x) for every x.
Then F is bounded from below and attains its minimum onD. Let (γ,α) denote a minimiser. Then α

satisfies the BCS gap equation

(K∆T + V)α = 0

10



3.1 Existence of Minimisers

where K∆T is a multiplication operator in momentum-space andV is a multiplication operator in configura-

tion space. The function K∆T is defined by

K∆T (p) =
E∆(p)

tanh
(

E∆(p)
2T

) , E∆(p) =
√
(p2 − µ)2 + |∆(p)|2, ∆ = 2V̂α = 2(2π)−3/2V̂ ∗ α̂.

Remark 3.2. Often the BCS gap equation is written in terms of∆ as

−∆ = (2π)−3/2V̂ ∗
∆

K∆T
, i.e. − ∆(p) =

1
(2π)3/2

∫
V̂(p − q)

∆(q)
K∆T (q)

dq.

This is what is used in [15]. We choose our formulation, since it is what we will actually use in the

rest of the thesis. That (K∆T + V)α = 0 implies the equation for ∆ is clear. The converse implication

is discussed in [16].

The reason why the Euler-Lagrange equation for ∆ above is called a gap equation is, that ∆ in

some sense corresponds to an energy gap in BCS theory. This is made precise in [16, Appendix A].

Thenon-vanishingofα is the sameas thenon-vanishingof∆. We showbelow, that there is some

critical temperatureTc, such that forT > Tc we have α ≡ 0 and forT < Tc we have α . 0. Hencewe

have a phase transition. In this phase transition we have a broken symmetry, that of a globalU(1)-
symmetry. (It is easy to see thatwemaychange thephaseofα (hencealsoof∆) byaglobal constant.)

The associated Goldstone modes are gapped (this is where∆ corresponds to an energy gap), see for

instance [2, p. 270-276]. This further motivates, why our definition of superconductivity is a good

one. Wewill discuss this energy gapmore in section 5.

Remark 3.3 (On the assumptions on V). We assume here that V is reflection-symmetric. This as-

sumption is notmade in the original paper [16], but ismade in [15], which is what this proof is based

on. It is an error, that this assumption is not stated in the original paper. We need this assumption

in order to get the Euler-Lagrange equations (the BCS gap equation) for the minimiser of the func-

tional. The proof of these Euler-Lagrange equations in [15, Proof of prop. 3.1] is short on details and

it is not discussed how the reflection-symmetry ofV is needed.

We provide our own proof of the Euler-Lagrange equations here (based somewhat on the ideas

in [15]). After proving the Euler-Lagrange equations we discuss the necessity of assuming thatV is

reflection-symmetric in remark 3.4 below. Here we show that it is almost necessary to make this

assumption.

The assumption thatV is reflection-symmetric is also quite physical. Often, onemight evenhave

a homogeneousmaterial, whereV would even be radial.

We now prove this theorem. Suppose firstT > 0.

3.1.1 Positive Temperature

We bound 1
4
∫
(p2 − µ)γ(p) dp − TS(Γ) from below. By writing down the dependence of the eigen-

values of Γ(p) on α one sees that this expression is increasing in |α̂ |, so that for a lower bound we

may set α ≡ 0. Note that if (γ,α) ∈ D then also (γ,0) ∈ D, so this is still a valid state. Now, twice

the value of this expression is

1
4

∫
(p2 − µ)(γ(p) + γ(−p)) dp + T

∫
γ(p) log γ(p) + (1 − γ(p)) log(1 − γ(p))

+ γ(−p) log γ(−p) + (1 − γ(−p)) log(1 − γ(−p)) dp

= 2
(
1
4

∫
(p2 − µ)γ(p) dp + T

∫
γ(p) log γ(p) + (1 − γ(p)) log(1 − γ(p)) dp

)
11



3 PRELIMINARY ANALYSIS

Now, bounding the integrand pointwise in p by varying the values of γ(p)we get

1
4

∫
(p2 − µ)γ(p) dp − TS(Γ) ≥ C1 := −T

∫
log

(
1 + e−

1
4T (p

2−µ)
)
dp > −∞.

Now [19, sect. 11.3] gives that p2+V is bounded frombelow, i.e. 0 ≥ C2 := inf spec(p2/4+V) > −∞.

Additionally by 0 ≤ Γ ≤ 1we get |α̂(p)|2 ≤ γ(p). Hence

1
4

∫
p2γ(p) dp +

∫
|α(x)|2V(x) dx ≥ C2

∫
|α̂(p)|2 dp ≥ C2

∫
γ(p) dp.

Combining this we arrive at

F (Γ) ≥ C1 +

∫ (
2p2

4 −
3µ
4 + C2

)
γ(p) dp

≥ C1 +

∫ (
p2

4 −
3µ
4 −

1
4 + C2

)
γ(p) dp +

1
8

∫
(1 + p2)γ(p) dp +

1
8

∫
(1 + p2)|α̂(p)|2 dp

≥ −A +
1
8 ‖γ‖ L1(R3,(1+p2) dp) +

1
8 ‖α‖2

H1(R3) ,

where−A := C1−
∫ [

p2

4 −
3µ
4 − 1

4 + C2
]
−
dp ≤ 0. Here [·]− = −min{·,0} denote the negative part.

This shows that F is bounded from below as claimed.

Let now Γn = (γn, αn) be a minimising sequence with F (Γn) ≤ 0. Then ‖αn‖
2
H1 ≤ 8A, so αn is

bounded in H1, so some subsequence (which we continue to denote by αn) will converge weakly to

some α ∈ H1 by Banach-Alaoglu. By [19, Thm. 11.4] we get that V is weakly H1 form-continuous,

i.e.
∫
|αn(x)|2V(x) dx →

∫
|α(x)|2V(x) dx for this subsequence αn. Similarly we have that γn is

uniformly bounded in L1((1 + p2) dp). Since also 0 ≤ γn(p) ≤ 1 we have that γn is uniformly

bounded in L∞. Thus γn is uniformly bounded in Lq((1 + p2) dp) for any 1 < q < ∞. So fix some

1 < q < ∞.

The remaining part of the functional

F 0(Γ) =

∫
(p2 − µ)γ(p) dp − TS(Γ)

is convex. Now,with another application of Banach-Alaoglu togetherwithMazur’s lemma [19, Thm.

2.13] (see [17, Thm. 2.9 - Lem. 2.11] for the details) we find a sequence Γ̃n = (γ̃n, α̃n) of convex com-

binations of the Γn such that α̃n → α pointwise a.e. and in H1 and γ̃n → γ pointwise a.e. and in

Lq((1+p2) dp). Moreover, lim inf F 0(Γ̃n) ≤ lim inf F 0(Γn). Also, α̃n still convergesweakly toα and

so
∫
|α̃n |

2V dx →
∫
|α |2V dx. Clearly Γ ∈ D. It remains to be checked that Γ really is a minimiser.

To see that Γ is a minimiser, we first note that the integrand in the expression for F 0(Γn) is

bounded frombelowby the integrable function−T log
(
1 + e−

1
T (p

2−µ)
)
. This is again seenbyvarying

γ(p) for each fixed p. Hence we get that the same pointwise bound hold for the sequence of convex

combinations, and so wemay apply Fatou’s lemma

F (Γ) = F (lim inf Γ̃n) ≤ lim inf F (Γ̃n) = inf
Γ̃∈D

F (Γ̃).

Weconclude that aminimiser of the functionalF exist. Now,we show the BCS gap equation for this

minimiser Γ = (γ,α).

First, we claim that γ(p) = γ(−p). To see this, observe that Γ̃(p) =
(
γ(−p) α̂(p)
α̂(p) 1 − γ(p)

)
∈ D is

an allowed state. Moreover, Γ̃ has the eigenvalues 1 − λ1,2, where λ1,2 denotes the eigenvalues for

12



3.1 Existence of Minimisers

Γ. (These can just be computed.) Thus S(Γ̃) = S(Γ) and so F (Γ̃) = F (Γ). Also, F 0 defined above is

strictly convex. Then we have

F (Γ) ≤ F

(
Γ + Γ̃

2

)
=

∫
|α(x)|2V(x) dx + F 0

(
Γ + Γ̃

2

)
(∗)

≤

∫
|α(x)|2V(x) dx +

1
2F

0(Γ) +
1
2F

0(Γ̃) =
1
2F (Γ) +

1
2F (Γ̃) = F (Γ)

where (∗) is an equality if and only if Γ̃ = Γ. We conclude that Γ = Γ̃, and so that γ(p) = γ(−p) for
every p. Since also α̂(p) = α̂(−p) for every p we see that Γ(p) = Γ(−p).

Now, since the entropy−t log t has unbounded derivative near 0 and 1wehave that for themin-

imising Γ its eigenvalues are never 0 or 1. More precisely, the eigenvalues of Γ are bounded away

from 0 and 1 on any given compact set.

Let now Γ̃ be any other state such that Γ̃ − Γ is of compact support. Then for sufficiently small

t > 0, the matrix Γ + t(Γ̃ − Γ) will also have its eigenvalues bounded away from 0 and 1 on the

compact set supp(Γ̃ − Γ). Hence by a standard dominated convergence argument we get that the

entropy S(Γ + t(Γ̃ − Γ)) is differentiable at t = 0 and thus

d

dt

����
t=0

F (Γ + t(Γ̃ − Γ)) ≥ 0,

where the limit in the derivative is t ↘ 0. For any state Γ̃ we have that the entropy is given by

S(Γ̃) = −1
2
∫

Tr[Γ̃ log Γ̃ + (1 − Γ̃) log(1 − Γ̃)] dp. (To see this, simply compute the eigenvalues of Γ̃

and 1 − Γ̃ at any point.) Hence, we compute that for the Γ̃ considered above we have

d

dt

����
t=0

F (Γ + t(Γ̃ − Γ)) =
1
2

∫
Tr

[
(Γ̃ − Γ)

(
H∆ + T log Γ

1 − Γ

) ]
dp,

with H∆(p) =
(
p2 − µ ∆(p)
∆(p) −p2 + µ

)
. Additionally, since the eigenvalues of Γ stay away from 0 and 1,

the state Γ̃′ := Γ − (Γ̃ − Γ) is also allowed (meaning that Γ + t(Γ̃′ − Γ) is a state for small t > 0) and
so we can compute the same for this state and thus we get the equality

0 = d

dt

����
t=0

F (Γ + t(Γ̃ − Γ)) =
1
2

∫
Tr

[
(Γ̃ − Γ)

(
H∆ + T log Γ

1 − Γ

) ]
dp.

We now claim that

H∆ + T log Γ

1 − Γ
= 0.

To see this first note that

Γ̃(p) − Γ(p) =
(
a(p) b(p)
b(p) −a(−p)

)
for some a = γ̃ − γ ∈ L1((1 + p2) dp) and b = ˆ̃α − α̂ ∈ H1. Moreover any matrix function

A(p) =
(
a(p) b(p)
b(p) −a(−p)

)
with a, b ∈ C∞

0 and b(p) = b(−p) is of the form A = 1
ε

(
Γ̃ − Γ

)
for some

small ε > 0 and Γ̃ ∈ D. Hence we have that∫
Tr

[
A

(
H∆ + T log Γ

1 − Γ

) ]
dp = 0

13



3 PRELIMINARY ANALYSIS

for all such A. Let p0 ∈ R3 be fixed and choose

a(p) = a [χ (N(p0 − p)) + χ (N(p0 + p))] b(p) = b [χ (N(p0 − p)) + χ (N(p0 + p))]

for any numbers a ∈ R, b ∈ C and N > 0 and a cut-off function χ of compact support satisfying

χ(0) = 1. Letting then N → ∞we get the pointwise equality

Tr
[ (

a b
b −a

) ( (
H∆ + T log Γ

1 − Γ

)
(p0) +

(
H∆ + T log Γ

1 − Γ

)
(−p0)

) ]
= 0.

Now, varying a and bwe get(
H∆ + T log Γ

1 − Γ

)
(p0) +

(
H∆ + T log Γ

1 − Γ

)
(−p0) = k

for some constant k since constants are the onlymatrices, that are orthogonal to all trace-0matrices.

Above we showed that Γ(p0) = Γ(−p0) and that Tr Γ(p0) = 1. Hence Γ(p0) has the eigenvalues λ
and 1 − λ for some 0 < λ < 1. AdditionallyTr H∆ = 0 and so

2k = Tr k = Tr
(
H∆(p0) + H∆(−p0) + 2T log Γ

1 − Γ
(p0)

)
= 2T log λ

1 − λ
+ 2T log 1 − λ

1 − (1 − λ)
= 0.

That is, (
H∆ + T log Γ

1 − Γ

)
(p0) +

(
H∆ + T log Γ

1 − Γ

)
(−p0) = 0. (3.1)

In order to show that both summands are zero we need the reflection symmetry ofV . SinceV and α
are reflection-symmetric, so is∆ = 2V̂α. ThusH∆(p) = H∆(−p) for every p. Thus the twosummands

above are the same. Since they sum to zero and p0 was arbitrary we thus get

H∆ + T log Γ

1 − Γ
= 0.

This is the Euler-Lagrange equation for our functional.

Note that H2
∆
= E2

∆
. Thus we have, by solving the equation above for Γ that

Γ(p) =
1

1 + e
1
T H∆(p)

=
1
2 −

1
2 tanh H∆(p)

2T
=

1
2 −

1
2

H∆(p)
E∆(p)

tanh E∆(p)
2T

=
©«

1
2 −

p2−µ

2K∆T (p)
−∆(p)
2K∆T (p)

−∆(p)
2K∆T (p)

1
2 +

p2−µ

2K∆T (p)

ª®¬ ,
since tanh is an odd function, so tanh H∆ =

H∆
E∆

tanh E∆. Hence we have the Euler-Lagrange equa-

tions (
γ(p) α̂(p)
α̂(p) 1 − γ(−p)

)
= Γ(p) = ©«

1
2 −

p2−µ

2K∆T (p)
−∆(p)
2K∆T (p)

−∆(p)
2K∆T (p)

1
2 +

p2−µ

2K∆T (p)

ª®¬ . (3.2)

In particular α̂ = −∆

2K∆T
. Recalling the definition of ∆ we thus have the BCS gap equation. Note that

convolving with V̂ gives the BCS gap equation for∆. This finishes the proof in the caseT > 0.

Remark 3.4 (Necessity of assuming that V is reflection-symmetric). We can prove that we indeed

needV to be (almost) reflection-symmetric. The two summands in equation (3.1) above only poten-

tially differ in the terms∆(p0) and∆(−p0). Since we need both to be zero we get that these must be

the same, i.e. that ∆ must be reflection-symmetric. Then by Fourier transforming we get that the

14
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productVαmust be reflection-symmetric. Since α already is reflection-symmetric we thus get that

V(x) = V(−x) for every x where α(x) , 0. Of course this might not mean for every x ∈ R3, and this

is what wemean byV being almost reflection-symmetric.

SinceαdependsonV in somecomplicatedway,weassumedthatV was reflection-symmetric ev-

erywhere. This is amuchmorenatural assumption thanassuming thatV is only reflection-symmetric

on the set where α does not vanish. (Verifying such an assumption would also be infeasible.)

Nowwe deal with the caseT = 0.

3.1.2 Zero Temperature

For the existence of minimiser this case is analogous to theT > 0 case, only with

C1 = inf
Γ∈D

1
4

∫
(p2 − µ)γ(p) dp =

1
4

∫
(p2 − µ)1{p2<µ} dp =

{
−2πµ5/2

15 if µ > 0,
0 if µ ≤ 0

> −∞

instead. We conclude that minimiser do exists.

In order to show the BCS gap equation we show that Γ = 1{H∆<0}, the projection onto the nega-

tive eigenspace for H∆. Then pointwise in p

Γ(p) = 1{H∆<0}(p) = lim
T→0

1
1 + e

1
T H∆(p)

= lim
T→0

©«
1
2 −

p2−µ

2K∆T (p)
−∆(p)
2K∆T (p)

−∆(p)
2K∆T (p)

1
2 +

p2−µ

2K∆T

ª®¬ = ©«
1
2 −

p2−µ

2K∆0 (p)
−∆(p)
2K∆0 (p)

−∆(p)
2K∆0 (p)

1
2 +

p2−µ

2K∆0 (p)

ª®¬
and wemay conclude the gap equation as we did in theT > 0 case.

First we show, that Γ is indeed a projection. The conditions 0 ≤ Γ ≤ 1 give that

0 ≤ det Γ(p) = γ(p)(1 − γ(−p)) − |α̂(p)|2, 0 ≤ det(1 − Γ(p)) = γ(−p)(1 − γ(p)) − |α̂(p)|2.

For every fixed p andfixed value of α̂(p), these inequalities define some strictly convex set of allowed

pairs (γ(p), γ(−p)) in the unit square. This set is reflection-symmetric in the line γ(p) = γ(−p). For
this fixed value of α̂(p)we should have γ(p) + γ(−p)maximal for p2 ≤ µ and minimal for p2 > µ,
since Γ is a minimiser. Hence this occurs in one of the two points where we have equalities

γ(−p)(1 − γ(p)) = γ(p)(1 − γ(−p)) = |α̂(p)|2.

Thus both Γ(p) and 1 − Γ(p) have determinant 0, and so Γ is a rank one projection. Moreover,

γ(p) = γ(−p). (In order to see this argument more clearly, it can prove helpful to make a sketch

of the allowed set of pairs (γ(p), γ(−p)) given by the inequalities above.)

We may compute the derivative exactly as for the T > 0 case, only now we don’t have to deal

with the trouble of whether the entropy is differentiable. That is, for any state Γ̃ ∈ D we have

0 ≤

∫
Tr

[
(Γ̃ − Γ)H∆

]
dp.

Let p0 be fixed and consider the state

Γ̃(p) =
(
1 −

χ(N(p0 − p)) + χ(N(p0 + p))
2

)
Γ(p) +

χ(N(p0 − p)) + χ(N(p0 + p))
2 1{H∆<0}(p)

with 0 ≤ χ ≤ 1 a smooth cut-off function supported in B(0,1)with χ(0) = 1. Note that this is an
allowed state since H∆(p) = H∆(−p) by the reflection-symmetry of V . Letting N → ∞ we get the

pointwise inequality

0 ≤ Tr
[
1
2

(
−Γ(p0) + 1{H∆<0}(p0)

)
H∆(p0)

]
+ Tr

[
1
2

(
−Γ(−p0) + 1{H∆<0}(−p0)

)
H∆(−p0)

]
.
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Now, Γ(−p) = Γ(p) and H∆(−p) = H∆(p) for any p and p0 was arbitrary. Thus

0 ≤ Tr
[
(−Γ + 1{H∆<0})H∆

]
.

Since H∆ is hermitian with eigenvalues±E∆ we have that

H∆ = E∆
(
1{H∆>0} − 1{H∆<0}

)
= E∆

(
21{H∆>0} − 1

)
.

We conclude that Tr Γ1{H∆>0} ≤ 0. On the other hand, Tr Γ1{H∆>0} ≥ 0 is clearly positive as both

are rank one projections. We conclude that Γ and1{H∆>0} are orthogonal and thus that Γ = 1{H∆<0}
as desired. This concludes the proof in theT = 0 case.

Remark 3.5. Note thatwe proved above that for anyT ≥ 0 theminimiser Γ is reflection-symmetric,

i.e. it satisfies that Γ(p) = Γ(−p).

Remark 3.6. Above we only concluded the Euler-Lagrange equation for α. There is of course also
one for γ. Going back to equation (3.2) we see that the Euler-Lagrange equation for γ is

γ(p) =
1
2 −

p2 − µ

2K∆T (p)
,

which of course also holds in theT = 0 case.

3.2 Linear Criterion for the Critical Temperature

We use the BCS gap equation to relate the existence of a superconducting phase to properties of the

operator K∆T + V . This section is based on [15].

Define the normal state Γ0 =

(
γ0 0
0 1 − γ0

)
with γ0(p) = 1

1+e
1
T (p2−µ)

. This state is seen to min-

imise the non-interacting, V = 0, case of the BCS functional. This is again a simple minimisation

problem varying γ(p) pointwise for fixed p. We have the following theorem

Theorem 3.7. Let V ∈ L3/2 be real-valued and reflection-symmetric, µ ∈ R and 0 ≤ T < ∞. Then the

following are equivalent

(i) The normal state Γ0 is not a minimiser, i.e. infΓ∈D F (Γ) < F (Γ0),

(ii) There exists Γ = (γ,α)with α , 0 non-vanishing satisfying the BCS gap equation (K∆T + V)α = 0,

(iii) The operator K0
T + V has at least one negative eigenvalue.

This leads us to the following definition of the critical temperature

Definition 3.8. The critical temperature of a system isTc = Tc(V) := inf{T ≥ 0 : K0
T + V ≥ 0}.

The above theorem says that for T < Tc the system is superconducting. Since K0
T is monotone in T

we get that forT > Tc the system is not superconducting. We now prove the theorem.

Proof. The claim (i) =⇒ (ii) is proven already. For the implication (ii) =⇒ (iii)we do the following.

First, the reader is invited to verify herself, that for any fixed p the function [0,∞) 3 |∆| 7→ K∆T (p)
is strictly increasing. Thus for our function ∆ we have that K∆T (p) > K0

T (p) for all p, where ∆ and

therefore also α̂ is non-vanishing. Additionally we have that K0
T + V ≤ K∆T + V as operators. We

thus conclude that 〈
α
��K0

T + V
��α〉

<
〈
α
��K∆T + V

��α〉
= 0.
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We claim that this implies that K0
T + V has a negative eigenvalue. This follows once we prove that

the essential spectrum of K0
T + V starts at 2T ≥ 0, meaning that it is contained in [2T,∞).

Define the function k(p) = 2T
(

p2−µ
2T

tanh p2−µ
2T

− 1
)
. Assume first that µ ≥ 0. Then for |p| → ∞we

have k(p) ∼ p2. Moreover, since |p| = µ is a minimum with k(p) = 0 we thus have that k(p) ≥

c(p2 − 2µ) for some constant c > 0, which we can choose arbitrarily small, and all p . That the

essential spectrum of K0
T + V starts at 2T is exactly that the essential spectrum of k + V starts at 0.

The spectral values of k + V are higher than the spectral values of c(p2 − 2µ) + V by the inequality

k+V ≥ c(p2−2µ)+V . Moreover, the essential spectrumof c(p2−2µ)+V = c
(
p2 + V

c

)
−2cµ starts

at−2cµby [19, Thm. 11.6]. (Indeed [19, Thm. 11.6] says that anynegative spectral value of p2+V is an

eigenvalue. Alternatively the CLR-bound [20, Thm. 4.1] gives that the number of negative spectral

values of p2 + V is even finite.)

Taking the limit c ↘ 0we get that the essential spectrum for k +V starts at 0. It follows that the

essential spectrum of K0
T + V starts at 2T as stated and thus that K0

T + V has a negative eigenvalue.

For µ < 0 the same applies, now only k(p) ≥ cp2 instead.
Now we prove that (iii) =⇒ (i). First we assume T > 0. Let ϕ ∈ C∞

0 be some (reflection-

symmetric) function (in Fourier space) and consider for small t (both positive and negative) the

function

t 7→ F

(
Γ0 + t

(
0 ϕ
ϕ 0

) )
,

where t small means that the argument in F lies in D. If Γ0 is not a stationary point, then (i) is
clearly true, so wemay assume that Γ0 is a stationary point. We thus intend to compute the second

derivative of this function at t = 0. The interaction part of the functional is not problematic and

gives for the second derivative 2 〈ϕ|V |ϕ〉 = 2
∫

V |ϕ̌|2 dx. The kinetic energy term is constant. We

thus turn our attention to the entropy.

DefineG :=
(
0 ϕ
ϕ 0

)
and f (s) = 1

2 (s log s + (1 − s) log(1 − s)). We thus have that the entropy is

given by S(Γ0 + tG) = −
∫

Tr f (Γ0 + tG) dp. For every fixed pwe have (suppressing in the notation

that all functions are evaluated at p)

d

dt
Tr f (Γ0 + tG) = Tr[ f ′(Γ0 + tG)G] =

1
2πi

∮
C

f ′(z)Tr
[

1
z − Γ0 − tG

G
]
dz,

whereC = ∂B
( 1

2,
1
2 − ε

)
is large enough to encircle the eigenvalues of Γ0(p)+tG(p). (In order to see

this version of the Cauchy integral formula, one can just expand the integrand as a power series in 1
z ,

exchange integration and summation and use the ordinary Cauchy integral formula for derivatives,

see [7].) Now, taking the derivative of this we have

d2

dt2

����
t=0

Tr f (Γ0 + tG) =
1

2πi

∮
C

f ′(z)Tr
[
d

dt

����
t=0

1
z − Γ0 − tG

G
]
dz

=
1

2πi

∮
C

f ′(z)Tr
[

1
z − Γ0

G
1

z − Γ0
G

]
dz,

since for a matrix function U(t) we have d
dt

(
U−1) = −U−1 d

dt UU−1. Now, one may compute that

{Γ0,G} = G and so{
G,

1
z − Γ0

}
=

1
z − Γ0

{G, z − Γ0}
1

z − Γ0
= (2z − 1) 1

z − Γ0
G

1
z − Γ0

.
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

Using this we get

d2

dt2

����
t=0

Tr f (Γ0 + tG) =
1

2πi

∮
C

f ′(z)Tr
[

1
z − Γ0

G
1

z − Γ0
G

]
dz

=
1

2πi

∮
C

f ′(z)
2z − 1 Tr

[{
1

z − Γ0
,G

}
G

]
dz

=
1

2πi

∮
C

2 f ′(z)
2z − 1 Tr

[
1

z − Γ0
G2

]
dz

= Tr
[
2 f ′(Γ0)

2Γ0 − 1G2
]

since f ′(s) = 1
2 log

( s
1−s

)
so f ′

( 1
2
)
= 0. Now, Γ0 =

1
1+e

1
T H0

so one computes
Γ0

1−Γ0
= e−

1
T H0 and

2Γ0 − 1 = − tanh
(

H0
2T

)
, where H0(p) =

(
p2 − µ 0

0 µ − p2

)
is the H∆ from above with∆ = 0. Thus

Tr
[
2 f ′(Γ0)

2Γ0 − 1G2
]
= 2|ϕ|2 Tr

[
H0
2T

tanh H0
2T

]
= 4|ϕ|2

E0
2T

tanh E0
2T

=
2
T

K0
T |ϕ|

2.

since x
tanh x is even and H2

0 = E2
0 . Thus, formally we have

d2

dt2

����
t=0

S(Γ0 + tG) = −

∫ 2
T

K0
T (p)|ϕ(p)|

2 dp = −
2
T

〈
ϕ
��K0

T

��ϕ〉 .
To pull the differentiation inside the integral in the first equality above we use a dominated conver-

gence argument, using that ϕ is of compact support. In total we conclude that

d2

dt2

����
t=0

F (Γ0 + tG) = 2
〈
ϕ
��K0

T + V
��ϕ〉 .

Since this operator has a negative eigenvalue, wemay choose ϕ ∈ C∞
0 such that this is negative. We

conclude that Γ0 is not the minimum, and so (i) holds.
In the caseT = 0 the above argument simplifies (due to the non-existence of the entropy term)

and we arrive at

d2

dt2

����
t=0

F (Γ0 + tG) = 2 〈ϕ|V |ϕ〉 ≤ 2
〈
ϕ
��K0

0 + V
��ϕ〉 .

And the same argument as above leads to the conclusion from here. �

Remark 3.9. The proof above shows in fact the stronger statement, that if either (hence all) of the

equivalent conditions are satisfied, thenΓ0 is not even a localminimum, so that a system in this state

would not be stable.

4 Asymptotics of the Critical Temperature

In this section we will consider our system in different asymptotic limits and find formulas for the

critical temperature in those. We first consider the limit of weak coupling.
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4.1 Weak Coupling

4.1 Weak Coupling

In this section we will consider a system in the weak coupling limit, meaning that V is small. The

waywe do this formally is to introduce a coupling constant λ > 0, and consider the potential λV for

fixedV and consider the limit λ ↘ 0. This section is based on [9].

Assumption 4.1. We assume thatV ∈ L1 ∩ L3/2 is real-valued and reflection-symmetric.

From now on we will forget the superscript 0 on K0
T , and just write KT . The critical temperature is

thus Tc(λV) = inf{T ≥ 0 : KT + λV ≥ 0}. Whether Tc > 0 or Tc = 0 for a given λV is non-trivial.

In theorem 4.3 belowwe give a sufficient condition forTc > 0.
The critical temperature Tc(λV) is characterized by 0 being the lowest eigenvalue of KT + λV ,

exactly forT = Tc. We use the Birman-Schwinger principle [20, pp. 75-77] to translate this property

to the property that

BT = λV1/2K−1
T |V |1/2 = λJ |V |1/2K−1

T |V |1/2

has−1 as its smallest eigenvalue. HereV1/2 is defined byV1/2 := sgn V |V |1/2 and J := sgn V . More

precisely

Proposition 4.2 ([9, Lem. 1]). LetT > 0. Then BT is Hilbert-Schmidt and has real spectrum. Moreover,

• ifTc > 0 then BT has−1 as the lowest eigenvalue exactly forT = Tc,

• ifTc = 0 then BT has spectrum contained in (−1,∞) for allT > 0.
Proof. First we have that KT ≥ cp2 hence K−1

T ≤ Cp−2. This function, seen as a tempered distri-

bution, has Fourier transformC 1
|x | . To see this note that

1
p2 is (−2)-homogeneous, and so its Fourier

transform will be (−3 − (−2))-homogeneous, i.e. (−1)-homogeneous. Additionally 1
p2 is rotation-

invariant, so its Fourier transform must be as well. In total the Fourier transform must be C 1
|x | for

some constantC.

Hence by the Hardy-Littlewood-Sobolev inequality [19, Thm 4.3] we thus see that the operator

PT := λ |V |1/2K−1
T |V |1/2 is Hilbert-Schmidt. Thus BT = JPT is. Moreover, since BT and P1/2

T JP1/2
T

are isospectral up to 0 being a spectral value, and P1/2
T JP1/2

T is self-adjoint, we get that BT has real

spectrum. (In fact 0 is in both spectra, since both operators are Hilbert-Schmidt.)

ForTc > 0we have thatTc is characterised exactly by KT + λV having 0 as its lowest eigenvalue.

Now, if ψ is an eigenvector for KT + λV with eigenvalue 0 then −ψ = λK−1
T Vψ. Hence ϕ := V1/2ψ

is an eigenvector of BT with eigenvalue−1. This shows that forT = Tc we have that BT has−1 as an
eigenvalue. (Note that KT + λV as a quadratic form has domain H1 since KT ∼ p2 for large p and by

the Hardy-Littlewood-Sobolev inequality. Also ψ ∈ H1 and so ϕ ∈ L2 is well-defined.)

Suppose now for contradiction that BT has−1 as an eigenvalue for someT > Tc, and let ϕ ∈ L2

be an eigenvector. Define ψ := −K−1
T |V |1/2ϕ. One computes that distributionally (KT + λV)ψ = 0,

and so that KT + λV has 0 as an eigenvalue. Now, KT is strictly increasing in T and so by lower-

ing T while still keeping T > Tc we get that KT + λV has a negative eigenvalue for some T > Tc.

Contradiction. We conclude that−1 is not an eigenvalue for BT for anyT > Tc.

We now show that−1 is the lowest eigenvalue of BTc . First, we claim that the eigenvalues of BT
depend continuously onT . This follows since we can bound by Taylor expansion inT

0 ≤
��K−1

T ′ (p) − K−1
T (p)

�� ≤ (
1 − tanh2 p2 − µ

2T

)
|T ′ − T |

2T2 =: LT,T ′(p) ∈ L1

pointwise. And so λ |V |1/2LT,T0 |V |1/2 is a bounded operator L2 → L2 with vanishing norm in the

limitT → T0. This is seen by the following decomposition of the operator.

L2 L1 L∞ L1 L∞ L2|V |1/2 ·̂ LT ,T ′ ·̌ |V |1/2
,
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

where ·̂, ·̌ : L1 → L∞ denote the Fourier transform and its adjoint. It follows that, in the limit

T ′ → T we have 〈ψ |BT ′ − BT |ψ〉 = o(1) uniformly in bounded ψ. Thus by the min-max principle

[19, Thm. 12.1] we get that the eigenvalues are continuous as desired.

Moreover, as T → ∞ we get that K−1
T → 0 pointwise and so the eigenvalues of BT converge

to 0 in this limit too. Hence, suppose for contradiction that −1 is not the lowest eigenvalue for BTc .

Increasing the temperature the lowest eigenvaluewould theneventually become−1 for someT > Tc
contradicting the previous. We conclude that BT has−1 as its lowest eigenvalue exactly forT = Tc.

The above argument also gives theTc = 0 case. �

Define for µ > 0 the operator

Vµ : L2(Ωµ) → L2(Ωµ), Vµu(p) =
1

(2π)3/2
1
√
µ

∫
Ωµ

V̂(p − q)u(q) dω(q),

where Ωµ is the Fermi sphere, the sphere in momentum-space of radius
√
µ and dω denotes inte-

gration w.r.t. to the Lebesgue measure normalised with |Ωµ | = 4πµ. Since V ∈ L1, its Fourier

transform V̂ is continuous by the Riemann-Lebesgue lemma [8, Thm. 8.22], and so its restriction to

a null-set (here translates of the Fermi sphere) is sensible, thus thisVµ is well-defined.

To see that Vµ is self-adjoint define F : L1 → L2(Ωµ) to be the Fourier transform restricted

to the Fermi sphere. Again, by the Riemann-Lebesgue lemma, this operator is well-defined and

bounded. Since V ∈ L1 we have thatF |V |1/2 : L2 → L2(Ωµ) is bounded and so, with J = sgn V

we haveVµ =
1√
µ

(
F |V |1/2

)
J
(
F |V |1/2

) †
. Since J = sgn V is real-valued, we have thatVµ is self-

adjoint. Define now

eµ(V) := inf specVµ.

The integral kernel ofVµ is
1

(2π)3/2√µV̂(p − q) ∈ L2(Ωµ × Ωµ) by the Riemann-Lebesgue lemma [8,

Thm. 8.22]. HenceVµ is Hilbert-Schmidt. Thus its eigenvalues converge to 0. In particular we have

eµ(V) ≤ 0. In fact,Vµ is even trace-class (this will be shown below) and its trace equals
√
µ

2π2

∫
V dx.

In particular if
∫

V dx < 0we have that eµ(V) < 0. We prove the following theorem.

Theorem 4.3 ([9, Thm. 1]). Let V ∈ L3/2 ∩ L1 be real-valued and reflection-symmetric and let µ > 0.
Suppose that eµ(V) < 0. ThenTc(λV) > 0 for all λ > 0 and

lim
λ→0

λ log µ

Tc(λV)
= −

1
eµ(V)

That is, for small λ the critical temperature isTc ∼ µ exp
(
−1
λeµ

)
.

Remark 4.4. In the case of a radial potentialV(x) = V(|x |) the eigenfunctions are (scaled versions

of) spherical harmonics and the eigenvalues are given by

√
µ

2π2

∫
V(x) j`(

√
µ|x |)2 dx, ` ∈ N0.

Here j` is the spherical Bessel function of the first kind. To see this we simply calculate VµY m
`

for

a (scaled) spherical harmonic Y m
`

(
p
√
µ

)
. I thank fellow student Benjamin Tangen Søgaard for this

computation. We use the plane wave expansion ([12, p. 406] and addition formula)

eik x = 4π
∞∑̀
=0

∑̀
m=−`

i` j`(|k | |x |)Y m
` (k̂)Y m

`
(x̂),
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4.1 Weak Coupling

where ◦̂ denotes the unit vector in direction ◦, i.e. x̂ = x/|x |. We compute

VµY m
` (p̂) =

1
(2π)3

1
√
µ

∫
R3

∫
Ωµ

V(x)e−ix(p−q)Y m
` (q̂) dω(q) dx

=
2√µ
π

∑̀
1,̀ 2

∑
m1,m2

∫ ∞

0

∫
S2

∫
S2

V(|x |)(−i)`1i`2 j`1(
√
µ|x |) j`2(

√
µ|x |)

×Y m1
`1

(p̂)Y m1
`1

(x̂)Y m2
`2

(q)Y m2
`2

(x̂)Y m
` (q) dω(q) dω(x̂) d|x |,

wherewe computed the x-integral in spherical coordinates, scaled the q-integral andused the plane
wave expansion as above. Using that Y m

`
= (−1)mY−m

`
and the orthonormality relations for the

spherical harmonics we arrive at

VµY m
` (p) =

2√µ
π

∫ ∞

0
V(|x |) j`(

√
µ|x |)2Y m

` (p̂) d|x | =
[ √

µ

2π2

∫
R3

V(x) j`(
√
µ|x |)2 dx

]
Y m
` (p̂)

as desired. Since there are 2` − 1 such spherical harmonics which are `-homogeneous, we see that

these eigenvalues are (2` − 1)-fold degenerate. In particular for ` = 0, i.e. for the constant func-
tion, the eigenvalue is non-degenerate. Since the functions Y m

`
span all of L2(S2) these are all the

eigenvalues.

If in addition the Fourier transform is non-positive, V̂ ≤ 0 then for any u we have

(2π)3/2√µ
〈
u
��Vµ

��u〉 =∬
Ωµ×Ωµ

u(p)V̂(p − q)u(q) dω(q) dω(p)

≥

∬
Ωµ×Ωµ

|u(p)|V̂(p − q)|u(q)| dω(q) dω(p).

Thus for the ground state we may take u non-negative. Hence it is not orthogonal to the constant

function and so the ground state must be the constant function, since the ` = 0 eigenvalue is non-

degenerate. That is, the ground state is u = 1√
4πµ in this case. This will be useful in section 5, when

we consider such potentials. Specifically we will use this in the proof of lemma 5.7

We now prove the theorem. Define the operator X : L2 → L2 by X = 1√
µ
|V |1/2F†F |V |1/2, where by

|V |1/2F† wemean the adjoint ofF |V |1/2. Then X is non-negative and has integral kernel

X(x, y) = |V(x)|1/2
1

2π2
sin√

µ|x − y |

|x − y |
|V(y)|1/2.

This follows fromthe fact that
∫

S2 eipx dω(p) = 4π sin |x |
|x | , which canbe computedbychoosing coordi-

nateswith x alignedwith the polar angle being zero. Wemay computeTr X =
√
µ

2π2

∫
|V(x)| dx < ∞.

Thus X is trace-class.

Define alsoYT by

BT = λ log
(
1 + µ

2T

)
JX + λYT,

where again J = sgn V , is themultiplicationoperator in configuration space,multiplyingby the sign

ofV . It is immediate that the operatorYT is Hilbert-Schmidt. In fact we have

Lemma4.5 ([9, Lem. 2]). For anyT > 0 the operatorYT isHilbert-Schmidt. Moreover, itsHilbert-Schmidt

norm is uniformly bounded inT > 0.
This lemma is the key technical result needed to prove our theorem. Wepostpone its proof. To relate

eµ to BT we have the following lemma
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

Lemma 4.6 ([9, Lem. 3]). The operators JX (on L2) andVµ (on L2(Ωµ)) have the same spectrum.

Proof. We find two operators A : L2 → L2(Ωµ) and B : L2(Ωµ) → L2 such that AB = Vµ

and BA = JX . Then the spectra of JX and Vµ coincide, except possibly at 0. However, 0 is in

both spectra, since both JX andVµ are Hilbert-Schmidt. Using that
∫

S2 eipx dω(p) = 4π sin |x |
|x | it is

straightforward to check that the following choice of A and B work.

Aψ(p) =
1

(2π)3/2

∫
|V(x)|1/2ψ(x)e−ipx dx, Bu(x) = V(x)1/2

1
(2π)3/2

1
√
µ

∫
Ωµ

u(p)eipx dω(p).

That is, A = F|V |1/2 and B = 1√
µ
V1/2F†. �

Since X is trace-class we get that JX is and soVµ is. Moreover, TrVµ = Tr JX =
√
µ

2π2

∫
V(x) dx as

previously claimed. We are now ready to prove the theorem

Proof of Theorem 4.3. We consider the spectrum of operators of the form αJX + λYT with α > 0.
As in [9] we will use the notation Θ(t) for a term that grows of order t, i.e. if there exists constants
0 < c < C with ct ≤ Θ(t) ≤ Ct.

For any z < specαJX we have that

αJX + λYT − z = (αJX − z)
(
1 + λ(αJX − z)−1YT

)
.

Hence this is invertible if

λ ‖YT ‖

 1
αJX − z

 < 1.

Now,
1

αJX − z
= −

1
z
+
α

z
JX1/2 1

αX1/2JX1/2 − z
X1/2

as can easily be checked. The operators αX1/2JX1/2 and αJX have the same spectrum, except pos-

sibly at 0. Since αJX is Hilbert-Schmidt, 0 is in the spectrum of αJX . By ordinary spectral calculus

we have

 1
αX1/2JX1/2−z

 = 1
dist(z, spec(X1/2JX1/2))

≤ 1
d for z a distance at least d from the spectrum of

αJX . We conclude that  1
αJX − z

 ≤
1
d
+
α

d2

X1/2
2
=

1
d
+
α

d2 ‖X ‖

In particular z is not in the spectrum of αJX + λYT if d = dist(z, specαJX) ≥ Θ(
√
αλ) + Θ(λ)

since ‖YT ‖ ≤ ‖YT ‖2 ≤ supT>0 ‖YT ‖2 < ∞ by Lemma 4.5. Since YT is bounded we have that the

spectrumofαJX +λYT depend continuously on λ and is the same as the spectrumofαJX for λ = 0.
Hence, as λ → 0 there must be some eigenvalue approaching the lowest eigenvalue of JX . In total

we conclude that the lowest eigenvalue of αJX + λYT differs from that of αJX by a term of order at

mostΘ(
√
αλ) + Θ(λ).

Suppose now eµ(V) < 0. Then JX has a negative eigenvalue and so the spectrumof the Birman-

Schwinger operator BT = λ log
(
1 + µ

2T

)
JX+λYT becomes arbitrarily negative asT → 0, sinceYT is

bounded. In particular for someT > 0, BT will have an eigenvalue of−1 and thusTc > 0. Moreover,

atT = Tc we have that λYTc tends to 0 in the limit λ → 0, hence the term α = λ log
(
1 + µ

2Tc(λV)

)
is

Θ(1) as λ → 0.
Let now α = λ log

(
1 + µ

2T

)
. Then the lowest eigenvalue of BT differs from λ log

(
1 + µ

2T

)
eµ(V)

by terms of order at mostΘ(
√
αλ) + Θ(λ). AtTc we have α = Θ(1) as λ → 0. Also λ vanishes faster

than
√
λ. Hence, since the lowest eigenvalue here is−1, we have−1 = λ log

(
1 + µ

2T

)
eµ(V)+O(

√
λ)

in the limit λ → 0. This gives the desired asymptotics. �
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We now give the proof of Lemma 4.5.

Proof of Lemma 4.5. By scaling we may wlog assume µ = 1. The idea is to decompose K−1
T into dif-

ferent terms, all of which are bounded except for the terms leading to the JX-term in the expression

for BT .

Define the function g(t) = t(1+e−t )
(t+2)(1−e−t ) . Note that then KT (p) =

(
|p2 − 1| + 2T

)
g

(
|p2−1|

T

)
. De-

compose K−1
T as K−1

T = L(1)
T + M (1)

T where L(1)
T = 1{p2<2}K−1

T and M (1)
T = 1{p2≥2}K−1

T . Since

inf t g(t) > 0 we have that M (1)
T ≤ C 1

p2 . Hence we may bound the kernel of |V |1/2M (1)
T |V |1/2 by

|V(x)|1/2 1
|x−y | |V(y)|1/2 ∈ L2(R3 × R3) by the Hardy-Littlewood-Sobolev inequality [19, Thm. 4.3].

Here we again used that 1
p2 , seen as a tempered distribution, has Fourier transform 1

|x | up to some

constant. We conclude that

V1/2M (1)
T |V |1/2


2
is bounded uniformly inT .

Now, the integral kernel of L(1)
T is

L(1)
T (x, y) =

1
(2π)3

∫
{p2<2}

eip(x−y)

(|p2 − 1| + 2T)g(|p2 − 1|/T) dp

=
1

2π2

∫ √
2

0

k
(|k2 − 1| + 2T)g(|k2 − 1|/T)

sin k |x − y |

|x − y |
dk

by computing the spherical part of the integral, using that
∫

S2 eipx dω(p) = 4π sin |x |
|x | . Decompose

now L(1)
T as L(1)

T = L(2)
T + M (2)

T with integral kernels

L(2)
T (x, y) =

1
2π2

∫ √
2

0

k
|k2 − 1| + 2T

sin k |x − y |

|x − y |
dk,

M (2)
T (x, y) =

1
2π2

∫ √
2

0

k
|k2 − 1| + 2T

sin k |x − y |

|x − y |

(
1

g(|k2 − 1|/T) − 1
)
dk .

Bounding | sin k |x − y | | ≤ k |x − y | ≤
√

2|x − y | and using the substitution t = |k2 − 1|/T we get���M (2)
T (x, y)

��� ≤ √
2

2π2

∫ 1/T

0

1
t + 2

(
1

g(t)
− 1

)
dt.

Now, as t → ∞ we have that 1
g(t) − 1 = 2

t + O(e−t). We get that the kernel M (2)
T (x, y) is bounded

uniformly inT . Hence wemay boundV1/2M (2)
T |V |1/2


2
≤ ‖V ‖1 sup

x,y
|M (2)

T (x, y)| < ∞

uniformly inT . Decomposing finally L(2)
T = L(3)

T + M (3)
T with kernels

L(3)
T (x, y) =

1
2π2

sin |x − y |

|x − y |

∫ √
2

0

k
|k2 − 1| + 2T

dk =
1

2π2 log
(
1 + 1

2T

)
sin |x − y |

|x − y |
,

M (3)
T (x, y) =

1
2π2

∫ √
2

0

k
|k2 − 1| + 2T

sin k |x − y | − sin |x − y |

|x − y |
dk .
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

Thus,V1/2L(3)
T |V |1/2 = log

(
1 + 1

2T

)
JX and soYT = V1/2

(
M (1)

T + M (2)
T + M (3)

T

)
|V |1/2. Since sin is

Lipschitz with constant 1 we get that | sin k |x − y | − sin |x − y | | ≤ |k − 1| |x − y | and so���M (3)
T (x, y)

��� ≤ 1
2π2

∫ √
2

0

k
k + 1 + 2T

dk ≤
1

2π2

∫ √
2

0

k
k + 1 dk < ∞

Thuswe get

V1/2M (3)
T |V |1/2


2
is bounded uniformly inT as before. Hence,YT is uniformly bounded

as desired. �

4.2 RefinedWeak Coupling

In this section we consider again the limit of weak coupling, only nowwe give more precise asymp-

totic results for the critical temperatureTc. This section is based on [13].

We will again work with the assumption that V ∈ L1 ∩ L3/2 is real-valued and reflection-

symmetric. Define the operatorWµ : L2(Ωµ) → L2(Ωµ) for µ > 0 by〈
u
��Wµ

��u〉 = ∫ ∞

0

p2

|p2 − µ|

∫
S2
|ψ(p)|2 −

��ψ(√µp̂)
��2 dω(p̂) +

∫
S2

��ψ(√µp̂)
��2 dω(p̂) d|p|

where ψ(p) = 1
(2π)3/2

∫
Ωµ

V̂(p − q)u(q) dω(q) and we again denote by p̂ the vector in direction p
with unit length, i.e. p̂ = p/|p|. We of course need to argue that this integral is indeed finite. This

follows by the fact that the spherical integral
∫

S2 |ψ(p)|2 dω(p̂) is a Lipschitz continuous function of

|p|, which we now show. We have∫
S2
|ψ(p)|2 dω(p̂)

=

∫
S2

1
(2π)6

∬
V(y)V(x)e−ipxeipy

∫
Ωµ

eiqxu(q) dω(q)
∫
Ωµ

e−iryu(r) dω(r) dx dy dω(p̂)

=
4π

(2π)6

∬ sin |p| |x − y |

|p| |x − y |
V(x)V(y)

∫
Ωµ

eiqxu(q) dω(q)
∫
Ωµ

e−iryu(r) dω(r) dx dy

since
∫

S2 eip(y−x) dω(p̂) = 4π sin |p| |x−y |
|p| |x−y | . We thus get����∫

S2
|ψ(p)|2 dω(p̂) −

∫
S2
|ψ(p′)|2 dω(p̂′)

����
≤ C

∬
| |p| − |p′| |
|p| + |p′|

|V(x)| |V(y)|

(∫
Ωµ

|u(q)| dω(q)

) 2

dx dy ≤ C
| |p| − |p′| |
|p| + |p′|

since
�� sin a

a − sin b
b

�� ≤ C |a−b|
a+b for all a, b > 0. We conclude that the spherical integral

∫
S2 |ψ(p)|2 dω(p̂)

is a Lipschitz continuous function of |p| at every p , 0. In particular at |p| =
√
µ. Hence this

shows that the defining integral for Wµ is well-defined and finite. Thus Wµ is a bounded opera-

tor L2(Ωµ) → L2(Ωµ). We will in fact show thatWµ is Hilbert-Schmidt in the proof of theorem 4.7

below.

Define the number

bµ(λ) := inf spec
(
π

2√µλVµ −
π

2µλ
2Wµ

)
.
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4.2 RefinedWeak Coupling

Note that if eµ = inf specVµ < 0 then also bµ(λ) < 0 for sufficiently small λ. If also the lowest

eigenvalue ofVµ is non-degenerate, meaning that the eigenspace is one-dimensional and spanned

by u, then

bµ(λ) =
〈
u
���� π

2√µλVµ −
π

2µλ
2Wµ

����u〉 +O(λ3) = λ
πeµ
2√µ − λ2 π

〈
u
��Wµ

��u〉
2µ +O(λ3).

This will follow from the proof below. We prove the following theorem.

Theorem 4.7 ([13, Thm. 1]). Let V ∈ L1 ∩ L3/2 be real-valued and reflection-symmetric and let µ > 0.
Assume that eµ(V) = inf specVµ < 0. Then the critical temperatureTc satisfies

lim
λ→0

(
log µ

Tc(λV)
+

π

2√µbµ(λ)

)
= 2 − γ − log 8

π
.

Here γ denotes the Euler-Mascheroni constant.

That is, in the limit λ → 0 the critical temperature satisfies

Tc = µ

(
8
π

eγ−2 + o(1)
)

exp
(

π

2√µbµ(λ)

)
.

Proof. The idea is more or less again to identify the singular part of K−1
T . Define

mµ(T) =
1

4πµ

∫
R3

1
KT (p)

−
1
p2 dp.

In lemma 4.8 below we show that as T → 0 we have mµ(T) = 1√
µ

(
log µ

T + 2 − γ + log 8
π + o(1)

)
.

Define the operator MT by

MT = K−1
T − mµ(T)F†F.

Of course F† on its own is nonsensical, however. By F†F we will mean the operator with kernel
√
µ

2π2
sin√

µ|x−y |
|x−y | , motivated by the fact thatV1/2F†F |V |1/2 has kernelV(x)1/2

√
µ

2π2
sin√

µ|x−y |
|x−y | |V(y)|1/2.

Using the asymptotics formµ(T)we see thatV1/2MT |V |1/2 = YT +O(1)JX uniformly in smallT .
Hence, uniformly in smallT wehave by lemma4.5 thatV1/2MT |V |1/2 is bounded inHilbert-Schmidt

norm. Thus forλ sufficiently smallwehave that1+λV1/2MT |V |1/2 is invertible, Hencewemaywrite

1 + BT = (1 + λV1/2MT |V |1/2)

(
1 +

λmµ(T)

1 + λV1/2MT |V |1/2
V1/2
F
†
F |V |1/2

)
Since−1 is the lowest eigenvalue for BT exactly forT = Tc wemay restate this as the operator

F |V |1/2
λmµ(T)

1 + λV1/2MT |V |1/2
V1/2
F
†

having−1as its lowest eigenvalue, since thisoperator is isospectral to the right-mostoperator above.

More precisely we have that −1 is the lowest eigenvalue for BT if and only if −1 is the lowest eigen-

value for the latter operator. Thus, letT = Tc, so that−1 is indeed the lowest eigenvalue.

Then, inverting themiddle operator by a Neumann series we have

inf spec
(
mµ(Tc)

(
λ
√
µVµ − λ

2
FV MTcVF

† +O(λ3)
) )
= −1,
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

where the error-term is uniformly bounded in small T . Moreover, by first-order perturbation we

have

mµ(Tc) +
1

λ
√
µ
〈
u
��Vµ

��u〉 − λ2
〈
u
��FV MTcVF†

��u〉 +O(λ3)
= 0,

where u is the ground state of Vµ. (In case of degeneracy, we should pick the u minimising the

λ2-term, see [13].) The error-term is uniformly bounded in small T . This is a standard Feynman-

Hellmann type argument.

This is the equationwe use to get the asymptotic behaviour. For the behaviour ofFV MTcVF
† in

this limit we again write ψ(p) = 1
(2π)3/2

∫
Ωµ

V̂(p − q)u(q) dω(q). We then have

〈
u
��FV MTVF†

��u〉 = ∫ 1
KT (p)

|ψ(p)|2 dp − mµ(T)
∫
Ωµ

|ψ(p)|2 dω(p)

=

∫ 1
KT (p)

(
|ψ(p)|2 − |ψ(

√
µp̂)|2

)
+

1
p2 |ψ(

√
µp̂)|2 dp.

The integrand converges pointwise to the integrand in
〈
u
��Wµ

��u〉 . To see that we may interchange

the limitT → 0 and the integral, note that KT decreases to |p2 − µ| forT → 0. Hence by dominated

convergence we get the desired. We conclude that

lim
λ→0

(
mµ(Tc) +

1〈
u
��λ√µVµ − λ2Wµ

��u〉
)
= 0.

Thus,

lim
λ→0

(
mµ(Tc) +

1
inf spec(λ√µVµ − λ2Wµ)

)
= 0.

Now, by the definition of bµ(λ) and the asymptotics of mµ(T), lemma 4.8, we thus get

lim
λ→0

(
1
√
µ

(
log µ

Tc(λV)
+ γ − 2 + log 8

π
+ o(1)

)
+

π

2µbµ(λ)

)
= 0,

which show the desired. �

We now prove the needed asymptotics for mµ(T).

Lemma 4.8 ([13, Lem. 1]). In the limitT/µ→ 0 we have the following asymptotics

mµ(T) =
1

4πµ

∫
R3

1
KT

−
1
p2 dp =

1
√
µ

(
log µ

T
+ γ − 2 + log 8

π
+ o(1)

)
,

where γ is the Euler-Mascheroni constant.

We state this result in a manner which also allows µ to vary. This we will need in section 4.3. Note

that for constant µ, this formula hold in the limitT → 0. The proof can be found in [13, Lem. 1]. We

reproduce it here for convenience.

Proof. First, by rotational invariance we have

mµ(T) =
1
µ

∫ √
µ

0

1
KT

−
1
p2 d|p| +

1
µ

∫ ∞

√
µ

1
KT

−
1
p2 d|p|
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4.2 RefinedWeak Coupling

Using the substitutions t = µ−p2

µ for the first integral and t = p2−µ
µ for the secondwe arrive at

mµ(T) =
1

2√µ

∫ 1

0

√
1 − t tanh

( µ
T

t
2
)

t
−

1
√

1 − t
dt +

1
2√µ

∫ ∞

0

√
1 + t tanh

( µ
T

t
2
)

t
−

1
√

1 + t
dt

Note that 1
2 − 1

2 tanh x
2 =

1
1+ex and so for the integral from 1 to∞we have that the integrand can be

dominated�����
√

1 + t tanh µ
T

t
2

t
−

1
√

1 + t

����� =
����� 1
t
√

1 + t
−

2
√

1 + t
t(1 + eµt/T )

����� ≤ 1
t
√

1 + t
+

2
√

1 + t
t

1
1 + et

uniformly inT/µ < 1. Hence by dominated convergence we get

lim
T/µ→0

∫ ∞

1

√
1 + t tanh

( µ
T

t
2
)

t
−

1
√

1 + t
dt =

∫ ∞

1

√
1 + t
t

−
1

√
1 + t

dt = 2 log(1 +
√

2).

Similarly by dominated convergence we get

lim
T/µ→0

∫ 1

0

√
1 ± t − 1

t
tanh

( µ
T

t
2

)
dt =

∫ 1

0

√
1 ± t − 1

t
dt

Andwe compute ∫ 1

0

√
1 + t − 1

t
dt = 2 log 2 − 2 + 2

√
2 − 2 log

(
1 +

√
2
)
,∫ 1

0

√
1 − t − 1

t
dt = 2 log 2 − 2

and ∫ 1

0

1
√

1 + t
+

1
√

1 − t
dt = 2

√
2.

Combining all this we get

mµ(T) =
1
√
µ

(∫ 1

0

tanh
( µ

T
t
2
)

t
dt + 2 log 2 − 2 + o(1)

)
.

We now split the integral according to

tanh
( µ
T

t
2

)
=

(
1 − e−µt/T

)
− e−µt/T tanh

( µ
T

t
2

)
.

Then by partial integration we have for the first part∫ 1

0

1 − e−µt/T

t
dt =

∫ µ/T

0

1 − e−t

t
dt = log µ

T

(
1 − e−µ/T

)
−

∫ µ/T

0
e−s log t dt.

hence [1, Eqn. 6.3.2]

lim
T/µ→0

(∫ 1

0

1 − e−µt/T

t
dt − log µ

T

)
= −

∫ ∞

0
e−t log t dt = γ.

For the second part we have∫ 1

0

tanh
( µ

T
t
2
)

e−µt/T

t
dt =

∫ µ/T

0

tanh
( t

2
)

e−t

t
dt =

∫ ∞

0

tanh
( t

2
)

e−t

t
dt + o(1) = log π2 + o(1)

as can be computed byWolfram Alpha. Combining all this we get the desired. �

Computingall the integralswherewe just state the result, can somewhat easily bedonebyhandwith

elementary integration techniques. We invite the interested reader to do the computation herself.
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4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

4.3 Low density

We now consider the limit of low density. Calling it a low density limit is maybe a bit too much.

We will consider the limit µ → 0. This indeed corresponds to lowering the density. (This is easily

seen for the normal states γ0(p) = (1 + exp((p2 − µ)/T))−1.) However, if the interaction V is very

attractive, one might even have a high density of particles for µ very small. Either way, we consider

the critical temperature in the limit µ→ 0. This section is based on [14].

Definition 4.9. Suppose −1 is not in the spectrum ofV1/2 1
p2 |V |1/2. Then the scattering length a of

2V is

a = a(V) := 1
4π

〈
|V |1/2

����� 1
1 + V1/2 1

p2 |V |1/2

�����V1/2

〉
.

We prove the following theorem

Theorem 4.10. Suppose thatV(x)(1+ |x |) ∈ L1 ∩ L3/2 is real-valued and reflection-symmetric, that the

spectrum ofV1/2 1
p2 |V |1/2 is contained in (−1,∞) and that the scattering length a < 0 is negative. Then the

critical temperature satisfies

lim
µ→0

(
log µ

Tc
+

π

2√µa

)
= 2 − γ − log 8

π
,

where γ is the Euler-Mascheroni constant.

Put differently, in the limit µ→ 0we have

Tc = µ

(
8
π

eγ−2 + o(1)
)

exp
(

π

2√µa

)
.

The restof this section isdevoted toproving this theorem. Firstweprove that thecritical temperature

is sufficiently small

Proposition 4.11. The critical temperature satisfiesTc = o(µ) in the limit µ→ 0.

Remark 4.12. This is not proved in the original paper [14]. There it is only proved that Tc = O(µ).
We in fact need this stronger statement to prove proposition 4.13 below. The statement of propo-

sition 4.13 in [14, Lem. 1] is not true. For large values of T = O(µ), the function m̃µ(T) might be

negative.

Proof. Let −1
λ denote thesmallest eigenvalueofV1/2 1

p2 |V |1/2. Thenλ > 1. Then theBirman-Schwinger

principle implies that p2 + λV ≥ 0. Wemay bound tanh t ≤ min{1, t} for t ≥ 0 and so

KT + V ≥
1
λ
|p2 − µ| +

(
1 −

1
λ

)
2T + V ≥

p2 − µ + (λ − 1)2T + λV
λ

≥
−µ + 2T(λ − 1)

λ
.

At T < Tc the operator KT + V has a negative eigenvalue. Hence we conclude that Tc ≤ Cµ for the
constantC = 1

2(λ−1) > 0. Now, decompose the Birman-Schwinger operator BT as

BT := V1/2 1
KT

|V |1/2 = V1/2 1
p2 |V |1/2 + m̃µ(T)

���V1/2
〉 〈

|V |1/2
��� + AT,µ.

Here m̃µ(T) =
µ

2π2 mµ(T) = 1
(2π)3

∫ 1
KT

− 1
p2 dp and AT,µ is defined such that this holds. Let c > 0 be

any constant. Wenowshow, uniformly inT with cµ ≤ T ≤ Cµ, that the second and third summand

vanish in the limit µ → 0. It then follows that the spectrum of BT approaches that ofV1/2 1
p2 |V |1/2.
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4.3 Low density

Since the latter is contained in
[
−1
λ ,∞

)
, we get thatT > Tc for any suchT . ThusTc = o(µ) as desired.

In the proof of lemma 4.8 we saw that mµ(T) is of order 1√
µ
forT/µ bounded. Thus m̃µ(T) vanishes

and so the second term vanishes in the limit µ→ 0. For the third term, its kernel is given by

AT,µ(x, y) = V(x)1/2 |V(y)|1/2
1

2π2

∫ ∞

0

(
sin |p| |x − y |

|p| |x − y |
− 1

) (
1

KT
−

1
p2

)
p2 d|p|,

where we used that
∫

S2 eipx dω(p̂) = 4π sin |p| |x−y |
|p| |x−y | . We now use the bound

�� sin b
b − 1

�� ≤ Cbα for any
0 ≤ α ≤ 2. We use this with α = 1

2 . Thus,

|AT,µ(x, y)| ≤ C |V(x)|1/2 |V(y)|1/2 |x − y |1/2

[∫ √
2µ

0

���� 1
KT

−
1
p2

���� p5/2 dp +
∫ ∞

√
2µ

���� 1
KT

−
1
p2

���� p5/2 dp

]
.

Now, for the first integral, wemay bound KT ≥ 2T ≥ 2cµ so 1
KT

≤ C 1
µ Thus∫ √

2µ

0

���� 1
KT

−
1
p2

���� p5/2 dp ≤

∫ √
2µ

0
C

1
µ
µ5/4 + Cµ1/4 dp ≤ Cµ3/4.

To bound the second integral we substitute s = p2−µ
µ . Then∫ ∞

√
2µ

���� 1
KT

−
1
p2

���� p5/2 dp =
µ3/4

2

∫ ∞

1

����1 + s
s

tanh
( µs
2T

)
− 1

���� 1
(1 + s)1/4

ds

≤
µ3/4

2

∫ ∞

1

tanh
( µs

2T

)
s(1 + s)1/4

+
1 − tanh

( µs
2T

)
(1 + s)1/4

ds

≤ Cµ3/4 + µ3/4
∫ ∞

1

1
(1 + s)1/4

1
1 + exp

( µs
T

) ds

≤ Cµ3/4

sinceT ≤ Cµ. The integral
∫
R3×R3 |V(x)| |V(y)| |x − y | dx dy < ∞ is finite by the assumptions onV .

Thus
AT,µ


2 ≤ Cµ3/4 → 0 vanishes as desired. �

Thus for our analysis, we may restrict to T ’s satisfying T = o(µ). By lemma 4.8 we thus have, in

particular, that m̃µ(T) �
√
µ for suchT ’s.

Proposition 4.13.We have

lim
µ→0

sup
T=o(µ)

AT,µ


2
µ1/4m̃µ(T)

= 0

Proof. Weuse a similar butmore refinedboundas aboveon the kernel of AT,µ. Let Z > 0be arbitrary.
First,����sin |p| |x − y |

|p| |x − y |

����
≤ C

[
p2Z21{|x−y |≤Z} + |p|1/2 |x − y |1/21{|x−y |≥Z}

]
1{p2≤2µ} + C |p|1/2 |x − y |1/21{p2≥2µ}

29



4 ASYMPTOTICS OF THE CRITICAL TEMPERATURE

where the constants don’t depend on Z . Thus we bound

|AT,µ(x, y)| ≤ C |V(x)|1/2 |V(y)|1/2

[
Z2

∫ √
2µ

0

���� 1
KT

−
1
p2

���� p4 dp

+ |x − y |1/21{|x−y |>Z}

∫ √
2µ

0

���� 1
KT

−
1
p2

���� p5/2 dp +|x − y |1/2
∫ ∞

√
2µ

���� 1
KT

−
1
p2

���� p5/2 dp
]
.

Since wemay bound∫ √
2µ

0

���� 1
KT

−
1
p2

���� pα dp ≤

∫ √
2µ

0

(
1

KT
−

1
p2

)
pα+2pα−2 dp ≤ Cm̃µ(T)µα/2+Cµ

α−1
2 ≤ Cm̃µ(T)µ

α−2
2 .

Wemay bound the first integral by (a constant times) µm̃µ(T) and the second by µ1/4m̃µ(T). Simi-

larly as before, the latter integral is bounded by µ3/4. Putting this together we conclude that

lim sup
µ→0

sup
T=o(µ)

AT,µ


2
µ1/4m̃µ(T)

≤ C
(∫

|x−y |>Z
|V(x)| |V(y)| |x − y | dx dy

) 1/2
.

Since |V(x)| |V(y)| |x − y | is integrable and Z > 0was arbitrary, we conclude the desired. �

We now rewrite 1 + BT . For simplicity defineQ := V1/2 1
p2 |V |1/2. Then

1 + BT = (1 +Q)

(
1 +

m̃µ(T)
1 +Q

(���V1/2
〉 〈

|V |1/2
��� + AT,µ

m̃µ(T)

) )
.

The critical temperature is the largest temperatureT such that BT has −1 as an eigenvalue. ThusTc
is the largest temperatureT such that

m̃µ(T)
1 +Q

(���V1/2
〉 〈

|V |1/2
��� + AT,µ

m̃µ(T)

)
has−1 as an eigenvalue. Now, 1

1+Q

��V1/2〉 〈
|V |1/2

�� has 4πa as its only non-zero eigenvalue (it is rank

one), and the lemma above gives that
AT ,µ

m̃µ(T)
vanishes as µ→ 0. Also m̃µ(T) is decreasing inT . Hence

lim
µ→0

m̃µ(Tc) =
−1
4πa

.

We now show that this convergence is o(µ1/2).
Since m̃µ(T) diverges inT = 0we get thatTc > 0 for µ sufficiently small. Alsowe see that m̃µ(Tc)

is of order 1 in the limit µ → 0. Hence AT,µ vanishes for µ → 0 and so 1 + Q + AT,µ is invertible for

µ small. Rewrite now instead

1 + BT =
(
1 +Q + AT,µ

) (
1 +

m̃µ(T)
1 +Q + AT,µ

���V1/2
〉 〈

|V |1/2
���)

Thus,Tc is characterised by the right-most operator having an eigenvalue of−1. Since this operator
is rank one, this means

−
1

m̃µ(Tc)
=

〈
|V |1/2

���� 1
1 +Q + ATc,µ

����V1/2
〉
. (4.1)
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We now consider the middle operator. First, note that

1 +Q + ATc,µ =

(
1 + ATc,µ

1
1 +Q

)
(1 +Q) .

Thus, by a power series expansion

1
1 +Q + ATc,µ

=
1

1 +Q

(
∞∑

k=0

(
−ATc,µ

1
1 +Q

) k
)

=
1

1 +Q
−

1
1 +Q

ATc,µ
1

1 +Q
+

1
1 +Q

ATc,µ

[
1

1 +Q

∞∑
k=0

(
−ATc,µ

1
1 +Q

) k
]

ATc,µ
1

1 +Q

=
1

1 +Q
−

1
1 +Q

ATc,µ
1

1 +Q
+

1
1 +Q

ATc,µ
1

1 +Q + ATc,µ
ATc,µ

1
1 +Q

.

Plugging this into equation (4.1) above, the first term gives 4πa and the third term is o(µ1/2) since
m̃µ(Tc) is of order 1 and so by proposition 4.13 we have

ATc,µ
 = o(µ1/4). The second term gives〈

f
�� sgn V ATc,µ

�� f 〉 , with f =
1

1 +Q
V1/2.

We now show that this terms is also o(µ1/2).

Proposition 4.14. The function f satisfies f (x)|V(x)|1/2(1 + |x |) ∈ L1.

Proof. First, using 1
1+Q = 1 − Q 1

1+Q we have

f (x)|V(x)|1/2(1 + |x |) =
(
|V |1/2(1 + | · |)

1
1 +Q

V1/2
)
(x)

=
(
|V |1/2(1 + | · |)V1/2

)
(x) −

(
|V |1/2(1 + | · |)Q

1
1 +Q

V1/2
)
(x).

For the first factor, wemay bound its L1-norm by ‖V(x)(1 + |x |)‖ L1 . For the secondwemay bound

its L1-norm by|V |1/2(1 + |x |)1/2


L2

(1 + |x |)1/2V1/2 1
p2 |V |1/2

  1
1 +Q

 V1/2


L2

≤ C ‖V(x)(1 + |x |)‖1/2
L1 ‖V ‖

1/2
L1

(1 + |x |)1/2V1/2 1
p2 |V |1/2

 .
We now show that this latter norm is finite. Since 1

p2 has Fourier transform 1
|x | up to a constant we

have for the square of the Hilbert-Schmidt norm(1 + |x |)1/2V1/2 1
p2 |V |1/2

2

2
= C

∫
R3×R3

����(1 + |x |)1/2V(x)1/2
1

|x − y |
|V(y)|1/2

����2 dx dy

= C
∫
R3×R3

(1 + |x |)|V(x)|
1

|x − y |2
|V(y)| dx dy

≤ C ‖V ‖ L3/2 ‖(1 + |x |)V(x)‖ L3/2 < ∞

by the Hardy-Littlewood-Sobolev inequality [19, Thm. 4.3]. We conclude the desired. �
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5 THE ENERGY GAP

Proposition 4.15. In the limit µ→ 0 we have
〈

f
�� sgn V ATc,µ

�� f 〉 = o(µ1/2).

Proof. First,〈
f
�� sgn V ATc,µ

�� f 〉
=

1
2π2

∫
R3×R3

f (x)|V(x)|1/2 f (y)|V(y)|1/2
∫ ∞

0

(
sin p|x − y |

p|x − y |
− 1

) (
1

KT
−

1
p2

)
p2 dp dx dy.

Similarly as in the proof of proposition 4.13wedecompose the sin b/b−1 term. Weget the following

bound on the kernel of ATc,µ.

��ATc,µ(x, y)
�� ≤ C |V(x)|1/2 |V(y)|1/2

[
Z2

∫ √
2µ

0

���� 1
KTc

−
1
p2

���� p4 dp

+ |x − y |1{|x−y |>Z}

∫ √
2µ

0

���� 1
KTc

−
1
p2

���� p3 dp +|x − y |1/2
∫ ∞

√
2µ

���� 1
KTc

−
1
p2

���� p5/2 dp
]
.

These integrals are bounded by µ, µ1/2, and µ3/4 respectively (recall that m̃µ(Tc) is of order 1) by the

same arguments as in proposition 4.11. We thus get for the expectation of f��〈 f
�� sgn V ATc,µ

�� f 〉�� ≤ C
∫

| f (x)| |V(x)|1/2 | f (y)| |V(y)|1/2

×

[
Z2µ + |x − y |1{|x−y |>Z}

√
µ + |x − y |1/2µ3/4

]
dx dy.

Since Z was arbitrary, wemay conclude the desired similarly as in the proof of proposition 4.13. �

Going back to equation (4.1) we thus see that m̃µ(Tc) =
−1
4πa + o(µ1/2). With lemma 4.8we thus have

lim
µ→0

(
1
√
µ

(
µ

2π2
1
√
µ

(
log µ

Tc
+ γ − 2 + log 8

π

)
+

1
4πa

) )
= 0.

That is,

lim
µ→0

(
log µ

Tc
+

π

2√µa

)
= 2 − γ − log 8

π
.

This proves theorem 4.10.

5 The Energy Gap

The function ∆ is, as stated before, related to an energy gap for the superconductor. This we will

discuss in this section. By introducing an approximate Hamiltonian as in [16] for the temperature

T = 0 one sees that E∆(p) =
√
(p2 − µ)2 + |∆(p)|2 has the interpretation as the dispersion relation

of certain quasi-particles. In a sense such a quasi-particle is amixture of a hole and an electron. This

means that the minimum Ξ := inf E∆(p) has the interpretation as an energy gap of the system. See

[2, p. 270-276] for a discussion of these quasi-particles and the dispersion relation. We now study

this energy gapΞ.
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5.1 Weak Coupling

5.1 Weak Coupling

We study the asymptotics of the energy gapΞ in the limit of weak coupling, meaning again that we

consider a potential λV forV fixed and λ > 0 some small number. Wewill show that the energy gap

Ξ is exponentially small in the coupling. The techniques used in this section are much the same as

in section 4.2. This section is also based on [13].

First, for the temperatureT = 0 we saw that Γ(p) = Γ(−p)was a projection and that for a given

α the minimising γ would bemaximal for p2 < µ andminimal for p2 > µ. This means

γ(p) =


1
2

(
1 +

√
1 − 4|α̂(p)|2

)
if p2 < µ

1
2

(
1 −

√
1 − 4|α̂(p)|2

)
if p2 > µ

.

Thus by subtracting a constant we get the BCS functional for zero temperature

F0(α) =
1
2

∫
|p2 − µ|

(
1 −

√
1 − 4|α̂(p)|2

)
dp + λ

∫
V(x)|α(x)|2 dx.

For radial potentialsV , this functional is invariant under rotations, i.e. α(x) 7→ α(Rx) for any rota-
tion R ∈ SO(3). Hence if α(x) is a minimiser, so is α(Rx). We prove the following theorem.

Theorem 5.1. Let V ∈ L1 ∩ L3/2 be radial with V̂ ≤ 0 and V̂(0) < 0, and let µ > 0. Then there exists

a unique (up to a constant global phase) minimiser α of the BCS functional at temperature T = 0. The

associated energy gapΞ is strictly positive and

lim
λ→0

(
log µ

Ξ
+

π

2√µbµ(λ)

)
= 2 − log 8

where bµ(λ) is as defined in section 4.2.

That is, for weak coupling the energy gap is

Ξ = µ
(
8e−2 + o(1)

)
exp

(
π

2√µbµ(λ)

)
.

Together with theorem 4.7 we immediately have the following.

Corollary 5.2. Let V ∈ L1 ∩ L3/2 be radial with V̂ ≤ 0 and V̂(0) < 0, and let µ > 0. Then the energy

gapΞ and critical temperatureTc satisfies

lim
λ→0

Ξ

Tc
= πe−γ ≈ 1.7639.

Note that since
∫

V dx = (2π)3/2V̂(0) < 0 for suchV ’s we have that eµ < 0 and so the assumptions

of theorem 4.7 are satisfied. Notice also that the constant πe−γ is independent on the potential V
and the chemical potential µ. Thus, the ratio of the energy gap and critical temperature tends to

some universal constant in this limit. Such a universal ratio has been observed before in the physics

literature, [4, 21].

Now, to prove theorem 5.1. First, we recall some facts from section 3. The Euler-Lagrange equa-

tions are

−∆(p) = 2E∆(p)α̂(p) and γ(p) =
1
2 −

p2 − µ

2E∆(p)
=


1
2

(
1 +

√
1 − 4|α̂(p)|2

)
if p2 < µ

1
2

(
1 −

√
1 − 4|α̂(p)|2

)
if p2 > µ

,
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5 THE ENERGY GAP

where E∆(p) =
√
(p2 − µ)2 + |∆(p)|2 = K∆T=0(p) and∆ = 2λV̂α. Using the above we get

E∆(p) =
|p2 − µ|√

1 − 4|α̂(p)|2
.

Thus we have

− ∆(p) = 2 |p2 − µ|√
1 − 4|α̂(p)|2

α̂(p). (5.1)

Of course∆ also satisfies the BCS gap equation for∆,

∆(p) = −
λ

(2π)3/2

∫
V̂(p − q)

∆(q)
E∆(q)

dq.

Lemma 5.3. There exists a unique minimiser α with α̂ > 0. Moreover, anyminimiser ofF0 is unique up to
a constant global phase.

The proof shows that−∆ is strictly positive (for this choice ofminimiser α). Also, the BCS gap equa-
tion for∆ gives that∆ is continuous and soΞ > 0 is strictly positive.

Proof. Since
∫

V dx = (2π)3/2V̂(0) < 0 we have that eµ < 0 and so by theorem 4.3 we have that

Tc > 0. Thus, a minimiser is non-zero. Let α . 0 be such aminimiser. Then

(2π)3/2 〈α |V |α〉 =

∬
α̂(p)V̂(p − q)α̂(q) dq dp ≥

∬
|α̂(p)|V̂(p − q)|α̂(q)| dq dp (5.2)

since V̂ ≤ 0. Thus (the inverse Fourier transform of) |α̂ | is also a minimiser of F0.
Let now for contradiction f , g be two minimisers with different non-negative Fourier trans-

form. Then by strict convexity of t 7→ 1 −
√

1 − 4t2 the function ψ := 1√
2

f + i√
2
g satisfies

F0(ψ) <
1
2F0( f ) +

1
2F0(g).

Contradiction. Thus there exists a uniqueminimiser with non-negative Fourier transform. Let now,

α be this uniqueminimiser with non-negative Fourier transform. We show that α̂ is non-vanishing,

i.e. α̂ > 0. Since α̂ ≥ 0we have by equation (5.1) that−∆ ≥ 0.
The set {∆ = 0} is closed by the continuity of ∆. We show, that it is also open. Thus, suppose

that ∆(p) = 0. Since V̂(0) < 0 we have V̂ < −ε on some ball B(0,r). Thus by the BCS gap equation

for ∆we have ∆ ≡ 0 on B(p,r), that is {∆ = 0} is open. By connectedness we have either ∆ ≡ 0 or

∆ non-vanishing. Since α . 0 we are in the latter case and so −∆ > 0 everywhere. Hence α̂ > 0
everywhere.

Now, let α be any minimiser. By the above we see that |α̂(p)| is non-vanishing, i.e. α̂ is non-

vanishing. Equation (5.2) above is strict for non-vanishing α̂, unless α̂(p) = eiφ |α̂(p)| for some con-

stant φ ∈ R. Hence our α satisfies this. This shows the desired uniqueness. �

Remark 5.4. We can use this to prove that a minimiser must be rotationally symmetric as follows.

Let α be any minimiser. Then |α̂ | is unique and still (the Fourier transform of) a minimiser. Any

rotation is also a minimiser so by uniqueness we have |α̂(Rp)| = |α̂(p)| for any rotation R. Thus
α̂(p) = eiφ |α̂(p)| = eiφ |α̂(Rp)| = α̂(Rp) is rotationally symmetric.

In the following wewill always take α to be the uniqueminimiser with positive Fourier transform.

The BCS gap equation for α is (E∆ + V)α = 0. In fact,

Lemma 5.5. The minimising α above is the ground state of the pseudo-differential operator E∆ + V .
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5.1 Weak Coupling

In particular E∆ + V ≥ 0.

Proof. Since V̂ ≤ 0 we may take the ground state ψ to have ψ̂ ≥ 0 by a computation similar to

equation (5.2). Then 〈ψ |α〉 =
〈
ψ̂
��α̂〉
, 0 so theyarenotorthogonal, andsoα is thegroundstate. �

Wemay as before use the Birman-Schwinger principle to see that the operator

B∆ := λV1/2 1
E∆

|V |1/2

has−1 as its lowest eigenvalue. The eigenvector is φ = V1/2α. We decompose this operator as

λV1/2 1
E∆

|V |1/2 = λmµ(∆)V1/2
F
†
F |V |1/2 + λV1/2M∆ |V |1/2,

where

mµ(∆) =
1

4πµ

∫ 1
E∆(p)

−
1
p2 dp.

Similarly as in lemma 4.5 we have

Proposition 5.6. The operator V1/2M∆ |V |1/2 is Hilbert-Schmidt. Moreover, its Hilbert-Schmidt norm is

bounded uniformly in small λ.

This is not proven in [13]. There it is noted that an argument similar to that in the proof of lemma 4.5

works. This we have not been able to see. Instead, we give our own proof. Some of the bounds in the

proof are however similar to those in the proof of lemma 4.5.

Proof. First we decompose

M∆ =
1

E∆
1{p2<2µ} +

1
E∆

1{p2≥2µ} − mµ(∆)F
†
F.

The second term can be bounded by (a constant times) 1
p2 . So the kernel ofV1/2 1

E∆
1{p2≥2µ} |V |1/2 is

bounded by |V(x)|1/2 1
|x−y | |V(y)|1/2 ∈ L2(R3 ×R3) by the Hardy-Littlewood-Sobolev inequality [19,

Thm. 4.3] and the fact that the Fourier transform of 1
p2 is 1

|x | . The remaining operator has the kernel(
M∆ −

1
E∆

1{p2≥2µ}

)
(x, y) =

1
(2π)3

∫
{p2<2µ}

eip(x−y)

E∆
dp −

1
(2π)3

sin√
µ|x − y |

√
µ|x − y |

∫ 1
E∆

−
1
p2 dp

=
1

2π2

[∫ √
2µ

0

k2

E∆(k)
sin k |x − y |

k |x − y |
−

sin√
µ|x − y |

√
µ|x − y |

dk

+
√

2µ
sin√

µ|x − y |
√
µ|x − y |

−

∫ ∞

√
2µ

(
k2

E∆(k)
− 1

) sin√
µ|x − y |

√
µ|x − y |

dk
]
,

where we again used that
∫

S2 eipx dω(p) = 4π sin |x |
|x | and that F†F has kernel

√
µ

2π2
sin√

µ|x−y |
|x−y | . Here

∆(k)means the values of∆(p) on the sphere with |p| = k . By the radial symmetry ofV , this is well-

defined. Define operators M (i)
∆
, i = 1,2,3 by having the kernels on the right hand side.

The second term, M (2)
∆

, is again taken care of by the Hardy-Littlewood-Sobolev inequality. For

the first term, M (1)
∆

we use the bound
�� sin a

a − sin b
b

�� ≤ C |a−b|
a+b valid for any a, b > 0. Then���� k2

E∆(k)
sin k |x − y |

k |x − y |
−

sin√
µ|x − y |

√
µ|x − y |

���� ≤ C

��k −
√
µ
��

k +
√
µ

≤ C.
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5 THE ENERGY GAP

This is integrable so M (1)
∆

has bounded kernel. Thus V1/2(x)M (1)
∆

(x, y)|V1/2(y)| ∈ L2(R3 × R3) as
desired.

For the third term, M (3)
∆

, we compute the integral����∫ ∞

√
2µ

k2

E∆(k)
− 1 dk

���� = ����∫ ∞

√
2µ

2µk2 − µ2 − |∆(k)|2

E∆(k) (k2 + E∆(k))
dk

���� ≤ C
∫ ∞

√
2µ

2µk2

k4 +
|∆(k)|2

k4 dk .

The first term here is integrable. The latter may be bounded by ‖∆‖2
L∞ . This we bound as follows.

‖∆‖ L∞ = 2λ
V̂α

L∞
≤ Cλ ‖Vα‖ L1 ≤ Cλ ‖V ‖ L3/2 ‖α‖ L3 ≤ Cλ ‖V ‖ L3/2 ‖α‖

1/2
L2 ‖α‖

1/2
L6

by [8, Prop. 6.10]. The L6-norm is bounded by the H1-norm by Sobolev’s inequality [19, Thm. 8.3].

Also, the H1-norm of α is bounded uniformly in small λ by the proof of theorem 3.1. (The constant

A in that proof (can be slightly changed to one that) is increasing in λ and the minimiser satisfies

‖α‖H1 ≤ 8A.) We conclude that M (3)
∆

(x, y) is uniformly bounded in small λ and sowe conclude the

desired. �

Factoring

1 + B∆ =
(
1 + λV1/2M∆ |V |1/2

) (
1 +

λmµ(∆)

1 + λV1/2M∆ |V |1/2
V1/2
F
†
F |V |1/2

)
as in section 4.2 we see that the operator

T∆ := F|V |1/2
λmµ(∆)

1 + λV1/2M∆ |V |1/2
V1/2
F
†

has −1 as its lowest eigenvalue. Inverting the middle operator by a Neumann series and recalling

FVF† =
√
µVµ we thus get

−1 = inf spec
(
λmµ(∆)

(
√
µVµ + λFV M∆VF† +O(λ2)

) )
.

That is,

lim
λ→0

(
mµ(∆) +

1
inf spec

(
λ
√
µVµ + λ2FV M∆VF†

) )
= 0 (5.3)

In particular λmµ(∆) →
−1√
µeµ

.

Equation (5.3) is what we will use to prove theorem 5.1. We will now study more precisely the

asymptotics of mµ(∆) andFV M∆VF†.
Lemma 5.7. For small λ the function∆ satisfies

∆(p) = f (λ)

(∫
Ωµ

V̂(p − q) dω(q) + ληλ(p)

)
for some f (λ) and function ηλ with ‖ηλ‖ L∞ ≤ C bounded independently of λ.

Proof. Since φ is an eigenvector for B∆ we see thatF |V |1/2φ is an eigenvector ofT∆ with eigenvalue

−1. Also u ≡ 1√
4πµ is an eigenvector of T∆, since T∆ is rotationally symmetric. Now, u is the unique

eigenvector ofVµ with its lowest eigenvalue eµ as discussed in remark 4.4. Thus, for small enough

36
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λ, we have that u must be the (unique) eigenvector for the smallest eigenvalue of T∆. Hence, by

transferring u to a (thus unique) eigenvector for B∆, we have

φ = f (λ)
1

1 + λV1/2M∆ |V |1/2
V1/2
F
†u = f (λ)

(
V1/2
F
†u + λξλ

)
(5.4)

for some f (λ) and by a Neumann series. The vector ξλ satisfies ‖ξλ‖ L2 ≤ C uniformly in small λ
sinceV1/2M∆ |V |1/2 andV1/2F† are bounded uniformly in λ. Thus

∆ = 2λV̂α = 2λ�|V |1/2φ = 2λ f (λ)
( �VF†u + ληλ

)
.

where ηλ =
�|V |1/2ξλ. Nowwe compute these two terms.

‖ηλ‖ L∞ ≤
1

(2π)3/2
|V |1/2ξλ


L1

≤
1

(2π)3/2
‖V ‖

1/2
L1 ‖ξλ‖ L2 ≤ C

uniformly in λ. Also, one computes that

�VF†u(p) =
1

(2π)3/2
1

√
4πµ

∫
Ωµ

V̂(p − q) dω(q).

Thus, absorbing the constant and the pre-factor of λ into f (λ) and rescaling ηλ we get the desired.

�

In the limit λ → 0we have∆→ 0 pointwise at least, and thus f (λ) → 0. Moreover, f (λ) is contin-
uous in λ. This is seen from the defining equation for f (λ), (the leftmost equality in equation (5.4)).

The functions on either side of the equality are continuous in λ.

We are now ready to prove the following analogue of lemma 4.8

Lemma 5.8. In the limit λ → 0 we have

mµ(∆) =
1

4πµ

∫ 1√
(p2 − µ)2 + |∆(p)|2

−
1
p2 dp =

1
√
µ

(
log µ

−∆(
√
µ)

− 2 + log 8 + o(1)
)
.

Here by∆(
√
µ)wemean the value of∆ on the Fermi-sphere, i.e. ∆(p) for any p with p2 = µ. Since∆

is radial this is well-defined. The proof of similar to that of lemma 4.8.

Proof. First, by computing the spherical integral and a change of variables we have

mµ(∆) =
1

2µ

[∫ µ

0

√
µ − t −

√
µ√

t2 + ∆(
√
µ − t)2

+

√
µ + t −

√
µ√

t2 + ∆(
√
µ + t)2

−
1

√
µ − t

−
1

√
µ + t

dt

+

∫ µ

0

√
µ√

t2 + ∆(
√
µ − t)2

+

√
µ√

t2 + ∆(
√
µ + t)2

dt +
∫ ∞

µ

√
µ + t√

t2 + ∆(
√
µ + t)2

−
1

√
µ + t

dt

]
. (5.5)

Now, we claim that
∫
Ωµ

V̂(p − q) dω(q) is a Lipschitz continuous function of p. Indeed,�����∫Ωµ

V̂(p − q) − V̂(r − q) dω(q)

����� =
√

2µ
π

����∫ V(x)
sin√

µ|x |
|x |

(
e−ipx − e−ir x

)
dx

���� ≤ C |p − r |.
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We now claim that

mµ(∆) =
1

2µ

[∫ µ

0

√
µ − t −

√
µ

t
+

√
µ + t −

√
µ

t
−

1
√
µ − t

−
1

√
µ + t

dt

+

∫ µ

0

2√µ√
t2 + ∆(

√
µ)2

dt +
∫ ∞

µ

√
µ + t
t

−
1

√
µ + t

dt + o(1)
]
. (5.6)

For the first and last integrals this follows by dominated convergence. For the middle integral we

have the following. Define the function(s) x(t) := ∆(√µ ± t). Then wewant to show that∫ µ

0

1√
t2 + x(t)2

−
1√

t2 + x(0)2
dt −→ 0. (5.7)

We first show that x(t) and x(0) are of the same size for small t. With lemma 5.7 above and the

Lipschitz continuity of
∫
Ωµ

V̂(p − q) dω(q)we have that

|x(t) − x(0)| ≤ | f (λ)|(Ct + Cλ) and x(0) = f (λ)

(∫
Ωµ

V̂(
√
µ − q) dω(q) +O(λ)

)
.

Tomake sense of
√
µ−q oneneed to choose anydirection p̂ ∈ S2, then thismeans

√
µ−q =

√
µp̂−q.

By the radial symmetry this does not depend on the direction p̂.
It follows that | f (λ)| ≤ C |x(0)|. Thus

|x(t)| ≤ | f (λ)|

(∫
Ωµ

|V̂(
√
µ ± t − q)| dq +O(λ)

)
≤ | f (λ)|

(
4πµ

V̂
L∞
+O(λ)

)
≤ C |x(0)|

For the bound |x(0)| ≤ C |x(t)| we do the following. We have

x(t) = f (λ)

(∫
Ωµ

V̂(
√
µ ± t − q) dω(q) +O(λ)

)
= f (λ)

(∫
Ωµ+

√
µ±t

V̂(q) dω(q) +O(λ)

)
.

Tomake sense of
√
µ ± t − q andΩµ +

√
µ ± t we do same as for

√
µ − q above.

By the continuity of V̂ and that V̂(0) < 0 we have that V̂ < V̂(0)
2 in some small ball B(0, ε′). For

t small, say t < ε then the setΩµ +
√
µ ± t intersects B(0, ε′) in some set of measure at least c1 for

some constant c1 > 0. Thus we have

|x(t)| ≥ | f (λ)|

(
|V̂(0)|

2 c1 +O(λ)

)
≥ c |x(0)|

for such t < ε. Note that ε is an absolute constant, that does not depend on λ. We now use this to

bound the integrand in equation (5.7) above. For t > ε we have����� 1√
t2 + x(t)2

−
1√

t2 + x(0)2

����� =
��x(t)2 − x(0)2

��√
t2 + x(t)2

√
t2 + x(0)2

(√
t2 + x(t)2 +

√
t2 + x(0)2

)
≤

|x(t) − x(0)|√
t2 + x(t)2

√
t2 + x(0)2

≤ C |x(0)|t−2
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5.1 Weak Coupling

which clearly has vanishing integral in the limit λ → 0. For t < ε we have����� 1√
t2 + x(t)2

−
1√

t2 + x(0)2

����� =
��x(t)2 − x(0)2

��√
t2 + x(t)2

√
t2 + x(0)2

(√
t2 + x(t)2 +

√
t2 + x(0)2

)
≤ C

(t + λ)x(0)2√
t2 + x(t)2

√
t2 + x(0)2

(
t +

√
t2 + x(0)2

)
≤ C

x(0)2√
t2 + x(0)2

(
t +

√
t2 + x(0)2

) + Cλ
|x(0)|√

t2 + x(0)2
(
t +

√
t2 + x(0)2

) .
Now, onemay compute that∫ ε

0

|x(0)|√
t2 + x(0)2

(
t +

√
t2 + x(0)2

) dt = O(1).

Thus both terms in the bound above have vanishing integral in the limit λ → 0. This proves equa-
tion (5.7) which in turn proves equation (5.6).

Now, it is a matter of computing the expression for mµ(∆) in equation (5.6). The first and last

integrals are computed in lemma 4.8. Themiddle gives∫ µ

0

√
µ√

t2 + ∆(
√
µ)2

dt =
√
µ log

µ +
√
µ2 + ∆(

√
µ)2

−∆(
√
µ)

=
√
µ log 2µ

−∆(
√
µ)
+ o(1)

by hyperbolic substitutions. We conclude the desired. �

Similarly as in section 4.2 we also need to study the behaviour ofFV M∆VF† in the limit λ → 0. We

have 〈
u
��FV M∆VF†

��u〉 = ∫ 1
E∆

(
|ψ(p)|2 − |ψ(

√
µp̂)|2

)
+

1
p2 |ψ(

√
µp̂)|2 dp

where

ψ(p) = �VF†u(p) =
1

(2π)3/2

∫
Ωµ

V̂(p − q)u(q) dω(q) =
1

(2π)3/2
1

√
4πµ

∫
Ωµ

V̂(p − q) dω(q).

Again, E∆ decreases to |p2 − µ| and so by dominated convergence
〈
u
��FV M∆VF†

��u〉 converges to〈
u
��Wµ

��u〉 .
Plugging all this into equation (5.3) we thus have

lim
λ→0

(
1
√
µ

(
log µ

−∆(
√
µ)

− 2 + log 8
)
−

1〈
u
��λ√µVµ − λ2Wµ

��u〉
)
= 0.

Recalling that bµ(λ) = inf spec
(

π
2√µλVµ −

π
2µλ

2Wµ

)
we thus have (againwith a similar argument

as in section 4.2 to replace the expectation against u with the lowest eigenvalue)

lim
λ→0

(
log µ

−∆(
√
µ)

−
π

2√µbµ(λ)

)
= 2 − log 8.
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5 THE ENERGY GAP

We now want to replace −∆(
√
µ)with the energy gap Ξ = inf E∆(p). Since E∆(

√
µ) = −∆(

√
µ)we

clearly haveΞ ≤ −∆(
√
µ). Also

Ξ ≥ min
|p2−µ|≤Ξ

−∆(p) ≥ −∆(
√
µ)(1 + o(1))

sinceΞ ≤ −∆(
√
µ) = o(1) and soΞ = −∆(

√
µ)(1 + o(1)). We conclude that

lim
λ→0

(
log µ

Ξ
+

π

2√µbµ(λ)

)
= 2 − log 8.

That is, we have proven theorem 5.1.

5.2 LowDensity

We study the asymptotics of the energy gap in the limit of low density. The results of this section are

new and the result of my ownwork. Some of themethods used are very similar to (and inspired by)

those of [14] presented in section 4.3. I expect to pursue publication of the contents of this section.

Themain result we prove is the following.

Theorem 5.9. Let V be radial and assume that V(x)(1 + |x |) ∈ L1 ∩ L3/2, V̂ ≤ 0, V̂(0) < 0, that
‖V ‖ L3/2 < S3, and that the scattering length a(V) < 0. Then,

lim
µ→0

(
log µ

Ξ
+

π

2√µa

)
= 2 − log 8.

That is, in the limit of low density, the energy gap satisfies

Ξ = µ
(
8e−2 + o(1)

)
exp

(
π

2√µa

)
.

This is known in the physics literature [18]. Recall that, the scattering length is

a(V) =
1

4π

〈
|V |1/2

����� 1
1 + V1/2 1

p2 |V |1/2

�����V1/2

〉
.

Here S3 =
3
422/3π4/3 ≈ 5.4779 is the best constant in Sobolev’s inequality [19, Thm. 8.3]. The

assumption that ‖V ‖ L3/2 < S3 gives that p2 + λV > 0 for any λ ≤ 1 by [19, sect. 11.3]. Thus,

by the Birman-Schwinger principle, the operator λV1/2 1
p2 |V |1/2 does not have −1 as an eigenvalue.

Varyingλwe thus get that the spectrumofV1/2 1
p2 |V |1/2 is contained in (−1,∞). Thus, the scattering

length is indeed finite. Also, for a V satisfying the assumptions it also satisfies the assumptions of

theorem 4.10. We thus immediately get following.

Corollary 5.10. Let V be radial and assume that V(x)(1 + |x |) ∈ L1 ∩ L3/2, V̂ ≤ 0, V̂(0) < 0, that
‖V ‖ L3/2 < S3, and that the scattering length a(V) < 0. Then,

lim
µ→0

Ξ

Tc
= πe−γ ≈ 1.7639.

This is the same universal ratio as in corollary 5.2. This universal ratio for low density is known in

the physics literature, [11]. The rest of this section is dedicated to proving this theorem.

One of the key ideas in the proof is to study the asymptotics of

m̃µ(∆) =
1

(2π)3

∫ 1
E∆(p)

−
1
p2 dp.
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5.2 LowDensity

This is similar to what we did in sections 4.2, 4.3 and 5.1.

First, the BCS functional at zero temperature is

F µ,V (α) =
1
2

∫
|p2 − µ|

(
1 −

√
1 − 4|α̂(p)|2

)
dp +

∫
V(x)|α(x)|2 dx.

Since V satisfies the assumption of section 5.1 we have that there exists a unique minimiser with

(strictly) positive Fourier transform. This we will denote by αµ,V . By scaling we have that

F µ,V (α) = µ5/2F 1,√µV√µ(β),

where β(x) = µ−3/2α(x/
√
µ) and V√

µ(x) = µ−3/2V(x/
√
µ). Note that

V√
µ


L1
= ‖V ‖ L1 and√µV√

µ


L3/2
= ‖V ‖ L3/2 . With this, we thus see that the minimiser with positive Fourier transform

satisfies

αµ,V (x) = µ3/2α1,√µV√µ(
√
µx).

We now bound this.

Proposition 5.11. In the limit µ→ 0 we have
αµ,V

H1 ≤ Cµ3/4.

Proof. With the scaling argument above, we computeαµ,V2
H1 =

∫
|α̂µ,V (p)|2

(
1 + p2) dp = µ3/2

∫
|α̂1,√µV√µ(q)|

2 (
1 + µq2) dq ≤ µ3/2

α1,√µV√µ

2

H1
.

We now show, that this latter norm is bounded uniformly in µ.

Let λ = S3
‖V ‖

L3/2
> 1. Then, as

√µV√
µ


L3/2
= ‖V ‖ L3/2 we have (as explained above) that

p2

λ +
√
µV√

µ ≥ 0. Thus wemay bound for any α,

F
1,√µV√µ(α) ≥

∫
(p2 − 1)|α̂(p)|2 dp +

∫
√
µV√

µ(x)|α(x)|
2 dx

=

〈
α

����p2

λ
+
√
µV√

µ

����α〉
+

∫ (
2εp2 − 1

)
|α̂(p)|2 dp

≥ ε

∫
|α̂(p)|2(1 + p2) dp +

∫
(εp2 − ε − 1)|α̂(p)|2 dp

≥ ε ‖α‖2
H1 − A,

where we introduced ε = 1
2 − 1

2λ > 0 and A = 1
4
∫ [

εp2 − 1 − ε
]
−
dp < ∞. Since F 1,√µV√µ(0) = 0

we get for the minimiser that

α1,√µV√µ


H1

is bounded uniformly in µ. We conclude thatαµ,V
H1 ≤ Cµ3/4. �

We now use this to bound∆µ,V = 2 �Vαµ,V = 2(2π)−3/2V̂ ∗ α̂µ,V . Note that since V̂ ≤ 0, we have that

∆µ,V ≤ 0. (In lemma 5.3 above we even showed that∆µ,V < 0.) First, we need the following.

Proposition 5.12. Let g ∈ H1(Rn), then ‖ ĝ‖ Lr ≤ C ‖g‖H1 for all 2n
n+2 < r ≤ 2.

In our case, of dimension n = 3, we thus get the condition 6
5 < r ≤ 2.

Proof. For r = 2 this is clear. For r < 2we compute

‖ ĝ‖ r
Lr =

∫
|ĝ(p)|r

(1 + p2)r/2

(1 + p2)r/2
dp ≤

(∫
|ĝ(p)|2

(
1 + p2) dp

) r/2 (∫ 1
(1 + p2)

r
2−r

dp
) 1−r/2

.

Since the second integral is finite for 2r
2−r > n we conclude the desired. �
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5 THE ENERGY GAP

With this wemay bound∆µ,V .

Proposition 5.13. The function∆µ,V satisfies

|∆µ,V (p)| ≤ Cµ3/4 and |∆µ,V (p′) − ∆µ,V (p)| ≤ Cµ3/4 |p′ − p|.

Proof. We compute

|∆µ,V (p)| ≤
2

(2π)3/2

∫ ���V̂(p − q)
��� α̂µ,V (q) dq ≤ C

V̂
L3

α̂µ,V
L3/2 ≤ C ‖V ‖ L3/2

αµ,V
H1 ≤ Cµ3/4

by theHausdorff-Young inequality [19, Thm. 5.7] and theboundsabove. Thebound for thedifference

is similar, using thatV̂(p′ − ·) − V̂(p − ·)


L3

≤ C
(∫ ���e−ip′x − e−ipx

���3/2 |V(x)|3/2 dx
) 2/3

≤ C
(∫

|p′ − p|3/2 |x |3/2 |V(x)|3/2 dx
) 2/3

= C ‖V | · |‖ L3/2 |p′ − p|,

where we used that V̂(p′ − ·) − V̂(p − ·) is the Fourier transform of
(
e−ip′x − e−ipx ) V(−x). �

For the sake of simplifying notation, we will just write∆ for the function∆µ,V from now on.

Note that this isnot averygoodbound. Onewould think that∆vanishes exponentially as µ→ 0.
(We prove this for the specific value∆(

√
µ) below.) This bound is however good enough to get some

reasonable control on m̃µ(∆). This is what we now do.

By computing the spherical part of the integral, splitting the integral according to p2 < 2µ and
p2 > 2µ, and using the substitutions s = µ−p2

µ and s = p2−µ
µ wemay rewrite m̃µ(∆) as

m̃µ(∆) =

√
µ

4π2


∫ 1

0

√
1 − s − 1√

s2 +
(
∆(
√
µ
√

1−s)
µ

) 2
+

√
1 + s − 1√

s2 +
(
∆(
√
µ
√

1+s)
µ

) 2
−

1
√

1 − s
−

1
√

1 + s
ds

+

∫ 1

0

1√
s2 +

(
∆(
√
µ
√

1−s)
µ

) 2
+

1√
s2 +

(
∆(
√
µ
√

1+s)
µ

) 2
ds

+

∫ ∞

1

√
1 + s√

s2 +
(
∆(
√
µ
√

1+s)
µ

) 2
−

1
√

1 + s
ds


.

We claim that

m̃µ(∆) =

√
µ

4π2


∫ 1

0

√
1 − s − 1√

s2 +
(
∆(
√
µ)

µ

) 2
+

√
1 + s − 1√

s2 +
(
∆(
√
µ)

µ

) 2
−

1
√

1 − s
−

1
√

1 + s
ds

+

∫ 1

0

2√
s2 +

(
∆(
√
µ)

µ

) 2
ds +

∫ ∞

1

√
1 + s√

s2 +
(
∆(
√
µ)

µ

) 2
−

1
√

1 + s
ds + o(1)


. (5.8)
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5.2 LowDensity

Thefirst and last integrals followbydominated convergence. For the second integralwegivea sketch

of why it should be true. Define the function(s) x(s) = ∆(
√
µ
√

1±s)
µ . We then want to show that∫ 1

0

1√
s2 + x(s)2

−
1√

s2 + x(0)2
ds → 0.

As in the proof of lemma 5.8we first want to show that |x(s)| ≤ C |x(0)|. This is enough, aswe prove

below. Our attempts at proving such bound have however been unsuccessful. We give an argument

for why, one should have such a bound.

The minimiser α̂µ,V is more or less localised atΩµ, (where α̂µ,V (
√
µ) = 1

2) meaning that α̂µ,V (p)
decays rapidly in dist(p,Ωµ). (To get an intuition for this, it is perhapsmost easily seen for themin-

imiser α1,√µV√µ .) We have by definition for p = O(
√
µ) that

∆(p) =
2

(2π)3/2

∫
V̂(p − q)α̂µ,V (q) dq '

2
(2π)3/2

∫
|q |<ε

V̂(0)α̂µ,V (q) dq,

for some absolute constant ε > 0 by the continuity of V̂ and the rapid decay of α̂µ,V . We have not

been able to explicitly bound the error term in this approximation. Intuitively, we have that α̂µ,V (q)
is very small as soon as |q | �

√
µ. Here the error-term has |q | ≥ ε = Θ(1) � √

µ, so indeed, the
error should be small. This approximation does not depend on p, and so ∆(p) ∼ ∆(

√
µ) are of the

same order. Hence |x(s)| ≤ C |x(0)| and so����� 1√
s2 + x(s)2

−
1√

s2 + x(0)2

����� ≤ Cµ1/4 |x(0)|√
s2 + x(0)2

(
s +

√
s2 + x(0)2

) ,
wherewe used that |x(s)− x(0)| ≤ Cµ1/4s by the Lipschitz bound on∆ and a computation similarly

as in the proof of lemma 5.8. Now, onemay compute that∫ 1

0
Cµ1/4 |x(0)|√

s2 + x(0)2
(
s +

√
s2 + x(0)2

) ds = O(µ1/4).

Thus, this also vanishes. We conclude that equation (5.8) holds.

The remainder of this section is quite similar to section 4.3. We decompose

B∆ := V1/2 1
E∆

|V |1/2 = V1/2 1
p2 |V |1/2 + m̃µ(∆)

���V1/2
〉 〈

|V |1/2
��� + A∆,µ,

where A∆,µ is defined such that this holds. That is, its kernel is

A∆,µ(x, y) = V(x)1/2 |V(y)|1/2
1

2π2

∫ ∞

0

(
sin p|x − y |

p|x − y |
− 1

) (
1

E∆(p)
−

1
p2

)
p2 dp.

In section 5.1 we saw that B∆ has−1 as its lowest eigenvalue. Now,

Proposition 5.14. In the limit µ→ 0 we have∆(
√
µ) = o(µ).

Proof. Suppose for contradiction that θ := −∆(
√
µ)

µ does not vanish. That is, suppose that there is

some subsequence with θ > B for µ→ 0 for some constant B > 0. We use the decomposition

B∆ = V1/2 1
p2 |V |1/2 + m̃µ(∆)

���V1/2
〉 〈

|V |1/2
��� + A∆,µ.
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5 THE ENERGY GAP

By the assumptions on V , we have that the spectrum of V1/2 1
p2 |V |1/2 is contained in (−1,∞). We

show that the remaining two terms in the decomposition above vanish in the limit µ → 0, and so

that the spectrum of B∆ approaches that ofV1/2 1
p2 |V |1/2. Since the latter has its lowest eigenvalue

strictly larger than−1, we get a contradiction.

For m̃µ(∆)we use equation (5.8) above. The only term that does not immediately vanish in the

limit µ→ 0 is the term

µ1/2

4π2

∫ √
1 + s

√
s2 + θ2

−
1

√
1 + s

ds.

By splitting this integral according to s < θ and s > θ we see that this term may be bounded by

Cµ1/2θ ≤ Cµ1/4 by proposition 5.13. Hence this term indeed also vanishes.

For the kernel of A∆,µ we use that
�� sin b

b − 1
�� ≤ Cbγ for any 0 ≤ γ ≤ 2 for the specific choice of

γ = 1
2 . Then��A∆,µ(x, y)�� ≤ C |V(x)|1/2 |V(y)|1/2 |x−y |1/2

[∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p5/2 dp +
∫ ∞

√
2µ

���� 1
E∆

−
1
p2

���� p5/2 dp

]
.

For the first integral we bound E∆(p) ≥ |∆(p)| ≥ Bµ and so∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p5/2 dp ≤

∫ √
2µ

0

1
Bµ

(2µ)5/4 + (2µ)1/4 dp ≤ Cµ3/4.

We bound the second integral as follows. First, with the substitution s = p2−µ
µ we have

∫ ∞

√
2µ

���� 1
E∆

−
1
p2

���� p5/2 dp =
µ3/4

2

∫ ∞

1

���������
1 + s√

s2 +
(
∆(
√
µ
√

1+s)
µ

) 2
− 1

���������
1

(1 + s)1/4
ds

≤
µ3/4

2

∫ ∞

1

1
s(1 + s)1/4

+

√
s2 +

(
∆(
√
µ
√

1+s)
µ

) 2
− s

s(1 + s)1/4
ds

≤ Cµ3/4 + Cµ3/4
∫ ∞

1

���∆(√µ√1+s)
µ

���
s(1 + s)1/4

ds

≤ Cµ1/2,

where we used that |∆(p)| ≤ Cµ3/4. The integral
∬

|V(x)| |V(y)| |x − y | dx dy < ∞ is finite by the

assumptions onV . Thus
A∆,µ


2 ≤ Cµ1/2 vanishes as desired. �

Using this refined bound, θ =
−∆(

√
µ)

µ = o(1), we may use a dominated convergence argument to

show that

m̃µ(∆) =

√
µ

4π2

[∫ 1

0

√
1 − s − 1

s
+

√
1 + s − 1

s
−

1
√

1 − s
−

1
√

1 + s
ds

+

∫ 1

0

2√
s2 +

(
∆(
√
µ)

µ

) 2
ds +

∫ ∞

1

√
1 + s
s

−
1

√
1 + s

ds + o(1)


.
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5.2 LowDensity

This expression is the same as in section 5.1. We conclude that

m̃µ(∆) =

√
µ

2π2

(
log µ

−∆(
√
µ)

− 2 + log 8 + o(1)
)

in the limit µ→ 0. In particular m̃µ(∆) �
√
µ. Now, we are interested in bounding A∆,µ.

Proposition 5.15.We have

lim
µ→0

A∆,µ


2
m̃µ(∆)

= 0.

Proof. The proof is similar as above, only we give amore refined bound on the kernel. We bound the
sin b

b term by����sin |p| |x − y |

|p| |x − y |
− 1

����
≤ C

[
p2Z21{|x−y |<Z} + |p|1/2 |x − y |1/21{|x−y |>Z}

]
1{p2<2µ} + C |p|1/2 |x − y |1/21{p2>2µ} .

Where Z > 0 is arbitrary, and the constantC does not depend on Z . Then

��A∆,µ(x, y)�� ≤ C |V(x)|1/2 |V(y)|1/2

[
Z2

∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p4 dp

+|x − y |1/21{|x−y |>Z}

∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p5/2 dp + |x − y |1/2
∫ ∞

√
2µ

���� 1
E∆

−
1
p2

���� p5/2 dp

]
.

Now, the first and second integral may be bounded by m̃µ(∆)µ and m̃µ(∆)µ
1/4 exactly as in sec-

tion 4.3. For any αwe have∫ √
2µ

0

���� 1
E∆

−
1
p2

���� pα dp ≤

∫ √
2µ

0

(
1

E∆
−

1
p2

)
pα+2pα−2 dp ≤ Cm̃µ(∆)µ

α/2+Cµ
α−1

2 ≤ Cm̃µ(∆)µ
α−2

2 .

Similarly as before, the last integral may be bounded by µ1/2 � m̃µ(∆). Thus we get

lim
µ→0

A∆,µ


2
m̃µ(∆)

= 0. �

Wemay decompose

1 + B∆ =
(
1 + V1/2 1

p2 |V |1/2
) (

1 +
m̃µ(∆)

1 + V1/2 1
p2 |V |1/2

(���V1/2
〉 〈

|V |1/2
��� + A∆,µ

m̃µ(∆)

) )
.

Since−1 is an eigenvalue of B∆ we get that−1 is an eigenvalue of

m̃µ(∆)

1 + V1/2 1
p2 |V |1/2

(���V1/2
〉 〈

|V |1/2
��� + A∆,µ

m̃µ(∆)

)
.

Proposition 5.15 above gives that the term
A∆,µ

m̃µ(∆)
vanishes in the limit µ → 0. The other term has

rank one and thus we get

lim
µ→0

−1
m̃µ(∆)

=

〈
|V |1/2

����� 1
1 + V1/2 1

p2 |V |1/2

�����V1/2

〉
= 4πa.
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5 THE ENERGY GAP

We now show, that this convergence is o(µ1/2).

First, we improve on proposition 5.15. Since m̃µ(∆) is of order 1 in the limit µ → 0 we have for

the third integral in the proof of proposition 5.15 that∫ ∞

√
2µ

���� 1
E∆

−
1
p2

���� p5/2 dp ≤ Cµ1/2 � µ1/4m̃µ(∆).

Hence we have for any Z > 0 and a constantC, that does not depend on Z that

lim sup
µ→0

A∆,µ


2
µ1/4m̃µ(∆)

≤ C
(∬

{|x−y |>Z}
|V(x)| |V(y)| |x − y | dx dy

) 1/2
.

Taking Z → ∞we get that

lim
µ→0

A∆,µ


2
µ1/4m̃µ(∆)

= 0.

In particular, A∆,µ vanishes in the limit µ→ 0. Thus the operator

1 + V1/2 1
p2 |V |1/2 + A∆,µ

is invertible for small µ and so wemay write

1 + B∆ =
(
1 + V1/2 1

p2 |V |1/2 + A∆,µ

) (
1 +

m̃µ(∆)

1 + V1/2 1
p2 |V |1/2 + A∆,µ

���V1/2
〉 〈

|V |1/2
���) .

Since −1 is an eigenvalue of B∆ we get that −1 is an eigenvalue of the latter operator. This has rank

one and so we get that

−1
m̃µ(∆)

=

〈
|V |1/2

����� 1
1 + V1/2 1

p2 |V |1/2 + A∆,µ

�����V1/2

〉
. (5.9)

We decompose themiddle operator on the right-hand-side as

1
1 + V1/2 1

p2 |V |1/2 + A∆,µ
=

1
1 + V1/2 1

p2 |V |1/2
−

1
1 + V1/2 1

p2 |V |1/2
A∆,µ

1
1 + V1/2 1

p2 |V |1/2

+
1

1 + V1/2 1
p2 |V |1/2

A∆,µ
1

1 + V1/2 1
p2 |V |1/2 + A∆,µ

A∆,µ
1

1 + V1/2 1
p2 |V |1/2

.

Plugging this into equation (5.9) above we get 4πa for the first term. The second term gives〈
f
�� sgn V A∆,µ

�� f 〉 , with f =
1

1 + V1/2 1
p2 |V |1/2

V1/2.

The third term is o(µ1/2) by the bound on A∆,µ above. We show that the second term is o(µ1/2) as
well.

Proposition 5.16. In the limit µ→ 0 we have
〈

f
�� sgn V A∆,µ

�� f 〉 = o(µ1/2).
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Proof. This is similar to the bound on A∆,µ above. We bound the kernel of A∆,µ by

|A∆,µ(x, y)| ≤ C |V(x)|1/2 |V(y)|1/2

[
Z2

∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p4 dp

+|x − y |1{|x−y |>Z}

∫ √
2µ

0

���� 1
E∆

−
1
p2

���� p3 dp + |x − y |3/4
∫ ∞

√
2µ

���� 1
E∆

−
1
p2

���� p11/4 dp

]
.

These integrals are bounded by µ, µ1/2 and µ5/8 respectively similarly as in proposition 5.15. (recall

that m̃µ(∆) is of order 1.) Thus

lim sup
µ→0

��〈 f
�� sgn V A∆,µ

�� f 〉��
µ1/2 ≤ C

∬
{|x−y |>Z}

| f (x)| |V(x)|1/2 |x − y | | f (y)| |V(y)|1/2 dx dy.

In proposition 4.14 above itwas proved that the integrand here is indeed integrable. Hence by taking

Z → ∞we get the desired. �

We thus conclude that

m̃µ(∆) =
−1
4πa
+ o

(
µ1/2

)
.

With the asymptotics of m̃µ(∆) above we thus get

lim
µ→0

(
log µ

−∆(
√
µ)
+

π

2√µa

)
= 2 − log 8.

Now, we want to replace −∆(
√
µ) by the energy gapΞ = inf E∆. ClearlyΞ ≤ −∆(

√
µ). On the other

hand

Ξ ≥ min
|p2−µ|≤Ξ

−∆(p) ≥ −∆(
√
µ)(1 + o(1))

Thus we conclude the desired

lim
µ→0

(
log µ

Ξ
+

π

2√µa

)
= 2 − log 8.

This concludes the proof of theorem 5.9.

6 Omitting the Direct and Exchange Terms

In this section we consider the validity of omitting the direct and exchange terms. We will consider

a sequence of short-range potentials, converging to a point interaction and show that in some sense,

thedirect andexchange terms canbe seenas a renormalisationof the chemical potential in this limit.

Morally thismeans that the approximation of omitting the terms is good for short-range potentials.

This section is basedon [6]. Firstwe state the results for themodel including thedirect and exchange

terms.
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6 OMITTING THE DIRECT AND EXCHANGE TERMS

6.1 Statement of Results

Similarly as in section 2, by consider translation-invariant states and doing a formal infinite volume

expansion, one is led to the functional [6]

F V
T (Γ) =

∫
(p2 − µ)γ̂(p) dp+

∫
|α(x)|2V(x) dx −TS(Γ) −

∫
|γ(x)|2V(x) dx + 2γ(0)2

∫
V(x) dx,

(6.1)

for Γ of the form

Γ(p) =
(
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(−p)

)
, 0 ≤ Γ ≤ 1.

Wewill need the concept of a normal state, Γ0, which is aminimiser of F V
T when restricted to states

with α ≡ 0. They are of the form

γ̂0(p) =
1

1 + exp
(
εγ0 (p)−µ̃γ0

T

) ,
where for general γ we have introduced

εγ(p) = p2 −
2

(2π)3/2

∫ (
V̂(p − q) − V̂(0)

)
γ̂(q) dq

µ̃γ = µ −
2

(2π)3/2
V̂(0)

∫
γ̂(p) dp

some sort of renormalised kinetic energy and chemical potential.

As before, we will say that a system is in a superconducting state if such a normal state Γ0 is not
a minimiser of F V

T . We have the following analogue of theorem 3.1.

Proposition6.1 ([6, Prop. 1]). Let µ ∈ R,0 ≤ T < ∞and letV ∈ L1∩L3/2 be real-valuedand reflection-

symmetric with

V̂
L∞

≤ 2V̂(0). Then F V
T is bounded from below and attains a minimiser Γ = (γ,α) on

D :=
{
Γ(p) =

(
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(−p)

)
: γ̂ ∈ L1(R3, (1 + p2) dp), α ∈ H1(R3,dx),0 ≤ Γ ≤ 1

}
.

Moreover, the minimising α satisfies the BCS gap equation

(Kγ,∆
T,µ + V)α = 0,

where

Kγ,∆
T,µ :=

Eγ,∆
µ

tanh
(

Eγ,∆
µ

2T

) , Eγ,∆
µ :=

√
(εγ − µ̃γ)2 + |∆|2, ∆ := 2V̂α = 2(2π)−3/2V̂ ∗ α̂.

Remark 6.2. Additionally, for the minimiser Γ = (γ,α), γ satisfies the Euler-Lagrange equation

γ̂(p) =
1
2 −

εγ(p) − µ̃γ

2Kγ,∆
T,µ (p)

.

Also, we have that∆ satisfies a BCS gap equation for∆ as well

−∆(p) =
1

(2π)3/2

∫
V̂(p − q)

∆(q)

Kγ,∆
T,µ (q)

dq.
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6.1 Statement of Results

Remark 6.3. Note here the assumption V̂(0) ≥

V̂
L∞

≥ 0, which is in sharp contrast to the as-

sumptions in section 5. This assumption is needed to ensure stability of the system.

Similarly we have the following analogue of theorem 3.7.

Theorem 6.4 ([6, Thm. 1]). Let µ ∈ R, 0 ≤ T < ∞ and letV ∈ L1 ∩ L3/2 be real-valued and reflection-

symmetric with

V̂
L∞

≤ 2V̂(0). Let Γ0 be a normal state.

• If inf spec(Kγ0,0
T,µ + V) < 0, then Γ0 is unstable, i.e. infΓ∈D F V

T (Γ) < F V
T (Γ0).

• If Γ0 is unstable, then there exists Γ = (γ,α) ∈ D with α . 0 satisfying the BCS gap equation

(Kγ,∆
T,µ + V)α = 0.

Remark 6.5. Note that this is “weaker” than theorem 3.7. We lack the implication

α . 0 satisfies the BCS gap equation =⇒ Γ0 is unstable.

The proof of that implication in theorem 3.7 does not work here, since Kγ,∆
T,µ depend on γ in a com-

plicated way. The same argument as in the proof of theorem 3.7 gives that Kγ,0
T,µ + V indeed does

have a negative eigenvalue, but it is not clear how this should imply that Kγ0,0
T,µ + V has a negative

eigenvalue.

Theproofs of these are similar to their counterparts (theorems3.1 and3.7) and canbe found sketched

in [6]. Wewill not provide them here. Wewill consider a sequence of potentials {V`}`>0 with ` → 0
satisfying the following assumptions

Assumption 6.6 ([6, Assumption 1]). We impose the following assumptions on the sequence {V`}.

(A1) V` ∈ L1 ∩ L2 is real-valued and reflection-symmetric.

(A2) The range ofV` is at most `, meaning that supp V` ⊂ B(0, `).

(A3) The scattering length a(V`) < 0 is negative and satisfies lim`→0 a(V`) = a < 0.

(A4) The 1-norm ofV` is bounded, i.e. lim sup`→0 ‖V`‖ L1 < ∞.

(A5) The average ofV` is positive, meaning V̂`(0) > 0 and lim`→0 V̂`(0) = V ≥ 0.

(A6)

V̂`
L∞

≤ 2V̂`(0) for all ` > 0.

(A7) There exists a constantC1 > 0 and some N ∈ Nwith ‖V`‖ L2 ≤ C1`
−N for small `.

(A8) There exists a 0 < b < 1 such that inf spec
(
p2 + V` − |p|b

)
> C2 > −∞ uniformly in `.

(A9) The operator 1+V1/2
`

1
p2 |V` |1/2 is invertible and has an eigenvalue e` of order `with correspond-

ing eigenvector φ`. (Meaning that there exists constants 0 < c < C with c` < e` < C`.)
Moreover, the operator

1
1 + V1/2

`
1
p2 |V` |1/2

(1 − P`)

is uniformly bounded in `, where P` = 1
〈J`φ` |φ`〉

|φ`〉 〈J`φ` | , and J` = sgn V`.
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6 OMITTING THE DIRECT AND EXCHANGE TERMS

(A10) The eigenvector φ` satisfies that 〈
|V` |1/2

��|φ` |〉
| 〈φ` | sgn(V`)φ`〉 |

= O(`1/2)

in the limit ` → 0.

Note that (A9) implies that the scattering length

a(V`) := 1
4π

〈
|V` |1/2

������ 1
1 + V1/2

`
1
p2 |V` |1/2

������V1/2
`

〉
is well-defined.

For examples of sequences of potentials satisfying thesewe refer to [6, Appendix A]. As described

in [6] one should have in mind a sequence of potentials that are repulsive on lengthscales of order

ε` � ` and attractive up to length `.
Wenow restrict to a sequence {V`} satisfying the assumptions above. Weagain define the renor-

malised kinetic energy and chemical potential

εγ` (p) = p2 −
2

(2π)3/2

∫ (
V̂`(p − q) − V̂`(0)

)
γ̂`(q) dq, µ̃γ` = µ −

2
(2π)3/2

V̂`(0)
∫

γ̂`(p) dp.

Then

Theorem 6.7 (Effective Gap Equation). Let T ≥ 0, let µ ∈ R and let Γ` = (γ`, α`) be a sequence of

minimisers of F
V`

T and define ∆` := 2(2π)−3/2V̂` ∗ α̂`. Then there exists ∆ ≥ 0 and γ̂ with |∆` | → ∆

pointwise, γ̂` → γ̂ pointwise and µ̃γ` → µ̃γ as ` → 0, satisfying

γ̂(p) =
1
2 −

p2 − µ̃

2K0,∆
T,µ̃γ

, µ̃γ = µ −
2V

(2π)3/2

∫
γ̂(p) dp (6.2)

Moreover, if∆` . 0 for a subsequence of `’s then

−1
4πa
=

1
(2π)3

∫ 1
K0,∆

T,µ̃γ
−

1
p2 dp.

That is, ∆ satisfies a sort of BCS Gap equation for numbers. The constantV = lim`→0 V̂`(0) is as in
(A5).

We define the critical temperature to be theT solving the BCS gap equation above for∆ = 0. For
this∆we have that γ̂(p) = 1

1+exp
(
p2−µ̃
T

) . More precisely

Definition6.8. Let µ > 0. Then the critical temperatureTc > 0and the renormalised chemical potential

µ̃ ∈ R are given implicitly by

−1
4πa
=

1
(2π)3

∫ tanh
(

p2−µ̃
2Tc

)
p2 − µ̃

−
1
p2 dp, µ̃ = µ −

2V
(2π)3/2

∫ 1

1 + exp
(

p2−µ̃
Tc

) dp (6.3)

Proposition6.9. The critical temperatureand renormalised chemical potential exist andareuniquely given

by equation (6.3).

50



6.2 Proofs

Proof. The defining equations can be written as

F(µ̃,Tc) =
−1
4πa

, G(µ̃,Tc) = µ

where

F(ν,T) =
1

(2π)3

∫ tanh
(

p2−ν
2T

)
p2 − ν

−
1
p2 dp, G(ν,T) = ν +

2V
(2π)3/2

∫ 1

1 + exp
(

p2−ν
T

) dp.

Onemay compute that [6]

∂T F < 0, ∂νF > 0, ∂T G > 0, ∂νG > 0.

One also easily checks for any fixedT > 0 that

G(ν,T) → ∞ as ν → ∞ and G(ν,T) → −∞ as ν → −∞.

Hence, the level set {G = µ} in (ν,T)-space is the graph of a strictly decreasing function, with limits

T → ∞ as ν → −∞ andT → 0 as ν → ∞. Thus it will intersect the graph of any strictly increasing

function in exactly one point. The level set of F is indeed the graph of such a function. We conclude

thatTc and µ̃ are indeed well-defined and unique. �

Note that it is crucial that µ > 0. If µ ≤ 0, then also µ̃ ≤ 0 and hence the equation F(ν,T) = −1
4πa has

no solution, since F(ν,T) < 0 for any ν ≤ 0. That is, for µ ≤ 0 the critical temperature isTc = 0.

Remark 6.10. In lemma 4.8we studied the asymptotics of the left integral in equation (6.3). Hence

we get the following asymptotic result. Compare to those of section 4.

Proposition 6.11. As a → 0 the critical temperature satisfies

Tc = µ̃

(
8
π

eγ−2 + o(1)
)

e
π

2
√
µ̃a .

The proof is an easy corollary of lemma 4.8 once we note that µ > 0 implies that µ̃ > 0 for small

enoughTc.

The critical temperature defined above is a critical temperature in the following sense

Theorem6.12. Let µ ∈ R, letT ≥ 0 and let Γ0
`
= (γ0

`
,0) be a sequence of normal states for the functionals

F
V`

T .

(i) IfT < Tc, then for sufficiently small ` the system is in a superconducting state, i.e. Γ0
`
is not aminimiser.

(ii) IfT > Tc, then for sufficiently small ` the system is not in a superconducting, i.e. Γ0
`
is a minimiser.

6.2 Proofs

We give proofs of some of the technical lemmas needed to prove theorems 6.7 and 6.12 and prove

these theorems. This section is based on [6] and all proofs, which we omit here, can be found there.
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6 OMITTING THE DIRECT AND EXCHANGE TERMS

6.2.1 The Gap Equation

First we prove theorem 6.7.

Lemma 6.13 ([6, Lemma 3]). There exists a constantC1 > 0 such that

F
V`

T (Γ) ≥ −C1 +
1
2

∫
(1 + p2)(γ̂ − γ̂0)

2 dp +
1
2

∫
|p|b |α̂(p)|2 dp

uniformly in `. Here γ̂0(p) = 1
1+exp

(
p2−µ
T

) .
Note that for a sequence of minimisers (γ`, α`) it follows that ‖α`‖ L2 is bounded uniformly in `.

Lemma 6.14 ([6, Lemma 4]). If Γ` = (γ`, α`) is a sequence of minimisers of F
V`

T then
∫
γ̂`(p)|p|b dp is

bounded uniformly in `.

It follows that ‖ γ̂`‖ L1 is also bounded independently of `. Since also ‖ γ̂`‖ L∞ ≤ 1 is bounded uni-

formly in ` we get that any Lp-norm of γ̂` is uniformly bounded.

For the next lemmawe first define

m̃γ`,∆`
µ (T) =

1
(2π)3

∫ 1
Kγ`,∆`

T,µ

−
1
p2 dp.

Lemma 6.15 ([6, Lemma 5]). Let Γ` = (γ`, α`) be a sequence of minimisers of F
V`

T . Then there exists

subsequences of γ` and α` (which we continue to denote by γ` and α`), a γ ∈ L1 ∩ L∞ and a ∆ ≥ 0 such

that in the limit ` → 0

(i) |∆` | converges pointwise to the constant function∆,

(ii)
∫
γ̂` dp converges to

∫
γ̂ dp,

(iii) µ̃γ` converges to µ̃γ := µ − 2V
(2π)3/2

∫
γ̂ dp,

(iv) εγ` converges pointwise to the function p2,

(v) γ̂` converges pointwise to γ̂,

(vi) m̃γ`,∆`
µ (T) converges to m̃γ,∆

µ (T) = m̃0,∆
µ̃γ (T).

Moreover, the limit (γ, µ̃γ,∆) satisfies equation (6.2).

In the proof of theorem6.7 below,wewill see that the result is actually true for the full sequence, and

not only for a subsequence.

Proof. (i). First, ∆̌` = 2V`α`. Thus
∆̌`

L1
≤ 2 ‖V`‖ L2 ‖α`‖ L2 ≤ C`−N by the assumptions and

lemma 6.13. Wewill now show that∆` converges to a polynomial, and then, that this polynomial is

of degree 0. Let

P`,N (p) =
1

(2π)3/2
N∑

j=0

(−i) j

j!

3∑
i1,...,ij=1

c(`,j)i1,...,ij
pi1 · · · pij

denote the N ’th order Taylor polynomial of ∆`, expanded at p = 0. (Note that ∆` is infinitely often
differentiable by the compact support ofV`.) The coefficients c(`,j)i1,...,ij

are given by

c(`,j)i1,...,ij
= (2π)3/2

(
i∂i1

)
· · ·

(
i∂ij

)
∆`(p)

���
p=0
=

∫
R3
∆̌`(x)xi1 · · · xij dx.
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6.2 Proofs

Wemay thus bound the error as

��∆`(p) − PN ,̀ (p)
�� = 1

(2π)3/2

������
∫
∆̌`(x)

(
e−ipx −

N∑
j=0

(−ipx) j

j!

)
dx

������ ≤ 1
(2π)3/2

∆̌`
L1

|p|N+1e` |p|`N+1

since ∆̌` is supported in B(0, `) and the sum in the integrand is the Taylor expansion of the exponen-

tial. By the bound above, this vanishes pointwise in p as ` → 0.
Define now c` := max0≤ j≤N max1≤i1,...,ij≤3

{���c(`,j)i1,...,ij

���} and c := lim sup`→0 c`. If c = 0 then

∆` → 0 pointwise, and we are done. So suppose that c > 0. Then, for some subsequence
P`,N

c`
con-

verges pointwise to some polynomial P of degree n ≤ N . In particular, also
∆`
c`

converges pointwise

to P. We now show, that P must be of degree 0. Rewrite

2α̂` =
∆`

Kγ`,∆`
T,µ

=
∆`

Eγ`,∆`
µ

tanh
(

Eγ`,∆`
µ

2T

)
=
∆`

Eγ`,∆`
µ

−
∆`

Eγ`,∆`
µ

2

1 + exp
(

E
γ` ,∆`
µ

2T

) .
Now, Eγ`,∆`

µ ≥ εγ` − µ̃γ` ≥ p2− µ and |∆` | ≤ Eγ`,∆`
µ . Thus, the second summand above has L2-norm

bounded uniformly in `. Moreover,

|εγ` − µ̃γ` | ≤ p2 + |µ| +
2

(2π)3/2

∫ (
2V̂`(0) − V̂`(p − q)

)
γ̂`(q) dq ≤ p2 + ν,

where ν := |µ| + 8
(2π)3/2 sup`>0 V̂`(0) ‖ γ̂`‖ L1 is finite by (A5) and lemma 6.14. In addition we thus

have Eγ`,∆`
µ (p) ≤

√
(p2 + ν)2 + |∆`(p)|2 and so

‖2α̂`‖ L2 ≥

 ∆`(p)√
(p2 + ν)2 + |∆`(p)|2


L2

− C.

We now consider the 2-norm on the right-hand-side. By dominated convergence we get for any

R > 0 that

lim sup
`→0

∫
|p|≤R

|∆`(p)|2

(p2 + ν)2 + |∆`(p)|2
dp =

∫
|p|≤R

|cP(p)|2

(p2 + ν)2 + |cP(p)|2
dp

where the integrand in the latter integral should be replaced by 1 if c = ∞. Now, if either c = ∞

or deg P ≥ 1 this latter integral diverges as R → ∞, contradicting that ‖ α̂`‖ L2 is bounded by

lemma 6.13. We conclude that deg P = 0 and c < ∞. Then∆` → ∆ := c pointwise as desired.

(ii). Lemma 6.13 (or alternatively, the comment just after lemma 6.14) gives that γ̂` is uniformly

bounded in L2. Thus, by Banach-Alaoglu we have that some subsequence γ̂` converges to some γ̂
weakly in L2. Since 1B(0,R) ∈ L2 for any R > 0we thus have that

lim
`→0

∫
B(0,R)

γ̂` dp =
∫

B(0,R)
γ̂ dp.

In particular for any R > 0we have

lim sup
`→0

∫
R3
γ̂` dp ≥ lim

`→0

∫
B(0,R)

γ̂` dp =
∫

B(0,R)
γ̂ dp.

53



6 OMITTING THE DIRECT AND EXCHANGE TERMS

Thus δ := lim sup`→0
∫
R3 γ̂` dp −

∫
R3 γ̂ dp ≥ 0 is positive. We now prove that δ = 0. By lemma 6.14

we have the following for any R > 0

∞ > C ≥ lim sup
`→0

∫
|p|≥R

γ̂`(p)|p|b dp ≥ Rb lim sup
`→0

∫
|p|≥R

γ̂`(p) dp

= Rb lim sup
`→0

(∫
R3
γ̂` dp −

∫
B(0,R)

γ̂` dp
)
= Rb

(
δ +

∫
R3
γ̂ dp −

∫
B(0,R)

γ̂ dp
)
≥ δRb.

Thus, taking R → ∞we get that δ = 0. Similarly, lim inf`→0
∫
γ̂` dp =

∫
γ̂ dp.

(iii). This is immediate from (ii).
(iv). We compute the difference��εγ` (p) − p2�� = 2

(2π)3/2

����∫ (
V̂`(p − q) − V̂`(0)

)
γ̂`(q) dq

����
≤

2
(2π)3

∬ ���V`(x) (e−i(p−q)x − 1
) ��� γ̂`(q) dq dx

≤
2

(2π)3 ‖V`‖ L1

∫
γ̂`(q) sup

|x |≤`

���e−i(p−q)x − 1
��� dq

≤ C ‖V`‖ L1

(γ̂` | · |bL1 + |p|b ‖ γ̂`‖ L1

)
`b

since we may bound
��eit − 1

�� ≤ C |t |b and |p − q |b ≤ (2 max{|p|, |q |})b ≤ 2b(|p|b + |q |b). All these
L1-norms are uniformly bounded by (A4) and lemma 6.14. We conclude that εγ` converges to p2

pointwise as desired.

(v). The Euler-Lagrange equation for γ` reads

γ̂` =
1
2 −

εγ` − µ̃γ`

2Kγ`,∆`
T,µ

=
1
2 −

εγ` − µ̃γ`

2K0,∆`
T,µ̃γ`

.

Now, we have just shown that the right-hand-side converges pointwise to

γ̃ =
1
2 −

p2 − µ̃γ

2K0,∆
T,µ̃γ

.

The weak and pointwise limits coincide, however. This follows by the inequalities 0 ≤ γ̂` ≤ 1 and

Fatou’s lemma [22, Thm. 9.11]. For any set A of finite measure we have the inequalities∫
A
γ̃ dp =

∫
A

lim inf
`→0

γ̂` dp ≤ lim inf
`→0

∫
A
γ̂` dp =

∫
A
γ̂ dp,∫

A
1 − γ̃ dp =

∫
A

lim inf
`→0

1 − γ̂` dp ≤ lim inf
`→0

∫
A

1 − γ̂` dp =
∫

A
1 − γ̂ dp.

Thus γ̂ = γ̃ satisfies equation (6.2).

(vi). The above arguments show that the integrand converges pointwise to the desired. We

rewrite the integrand as a sum of two (types of) terms. One where we can use dominated conver-

gence to get the desired, and one where we use an argument similar to the one we used in (ii).
Note that the Euler-Lagrange equation for γ` can be rewritten as

γ̂` =
1

1 + exp
(

E
γ` ,∆`
µ

T

) + Eγ`,∆`
µ − (εγ` − µ̃γ` )

2Kγ`,∆`
T,µ

.
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Thus, introducing ξ(x) = x
ex−1 wemaywrite

1
Kγ`,∆`

T,µ

−
1
p2 =

εγ` − µ̃γ` − Eγ`,∆`
µ

Kγ`,∆`
T,µ p2

+

p2 − (εγ` − µ̃γ` ) − 2Tξ
(

E
γ` ,∆`
µ

T

)
Kγ`,∆`

T,µ p2

= −2 γ̂`
p2 +

2
p2

1

1 + exp
(

E
γ` ,∆`
µ

T

) + p2 − (εγ` − µ̃γ` ) − 2Tξ
(

E
γ` ,∆`
µ

T

)
Kγ`,∆`

T,µ p2
. (6.4)

As before, we have Eγ`,∆`
µ ≥ p2 − µ and so themiddle term can be bounded by

2
p2

1

1 + exp
(

E
γ` ,∆`
µ

T

) ≤
2
p2

1

1 + exp
(

p2−µ
T

) ∈ L1.

Also,

κ(x) :=
{

x
tanh x if x > 0,
1 if x ≤ 0

is increasing. Thus Kγ`,∆`
T,µ ≥ 2T κ

(
p2−µ
2T

)
. Moreover, ξ(x) ≤ 1 for x ≥ 0. Using the bound from (iv)

we thus see that the latter term in equation (6.4) above can be dominated by an integrable function.

Hence dominated convergence takes care of the middle and last terms. An argument similarly as in

(ii) takes care of the γ̂`/p2-term.

We proved above that γ also satisfies the Euler-Lagrange equation, and so equation (6.4) hold

also for (γ, µ̃γ,∆) instead. This concludes the proof. �

Nowwe are ready to prove our theorem

Proof of theorem 6.7. The convergence of γ`, α`,∆` and that the limit points satisfy the appropriate

Euler-Lagrange equations follow from lemma 6.15 for a subsequence. We now show, that the limit

points of µ̃γ` and |∆` | and thus also that of γ̂` are unique.
A pair of limit points (µ̃γ,∆) satisfies the equations

F(µ̃γ,∆) = 0, G(µ̃γ,∆) = 0

where

F(ν,∆) = ν − µ +
V

(2π)3/2

∫
1 −

p2 − ν

K0,∆
T,ν

dp, G(ν,∆) =
1

4πa
+

1
(2π)3

∫ 1
K0,∆

T,ν

−
1
p2 dp.

One computes that

∂νF > 0, ∂∆F > 0, ∂νG > 0, ∂∆G < 0.

This proves uniqueness for∆ , 0. For∆ = 0we have

F(ν,0) = ν − µ +
V

(2π)3/2

∫
1 − tanh

(
p2 − ν

2T

)
dp = ν − µ +

2V
(2π)3/2

∫ 1

1 + exp
(

p2−ν
T

) dp.
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In the proof of proposition 6.9 we saw that this was strictly increasing in ν, and so there is at most

one solution to the equation F(ν,0) = 0.
It remains to consider a sequenceofnon-vanishing∆`. We followamethodsimilar to section4.3.

For the minimisers we have the BCS gap equation

(Kγ`,∆`
T,µ + V`)α` = 0.

Since∆` . 0wehave thatα` . 0. By the Birman-Schwinger principle,Kγ`,∆`
T,µ +V` has an eigenvalue

0 if and only if

V1/2
`

1
Kγ`,∆`

T,µ

|V` |1/2

has an eigenvalue−1. Decompose this as

V1/2
`

1
Kγ`,∆`

T,µ

|V` |1/2 = V1/2
`

1
p2 |V` |

1/2 + m̃γ`,∆`
µ (T)

���V1/2
`

〉 〈
|V` |1/2

��� + Aµ,T ,̀

where Aµ,T ,̀ is defined so that the above holds. Then its kernel is

Aµ,T ,̀ (x, y) =
1

(2π)3V`(x)1/2 |V`(y)|1/2
∫ ©« 1

Kγ`,∆`
T,µ

−
1
p2

ª®¬
(
e−ip(y−x) − 1

)
dp.

For the sake of simplifying notation, we introduceQ` := V1/2
`

1
p2 |V` |1/2. Then by (A9)we have 1+Q`

invertible and so

1 + V1/2
`

1
Kγ`,∆`

T,µ

|V` |1/2 = (1 +Q`)

(
1 + 1

1 +Q`

(
m̃γ`,∆`
µ (T)

���V1/2
`

〉 〈
|V` |1/2

��� + Aµ,T ,̀

) )
.

Thus the latter operator has an eigenvalue of−1.
Claim 6.16.We have

lim
`→0

 1
1 + V1/2

`
1
p2 |V` |1/2

Aµ,T ,̀

 = 0.

Weprove this below. This implies that 1+ 1
1+Q`

Aµ,T ,̀ is invertible for small enough `. Thus similarly

as above

m̃γ`,∆`
µ (T)

(
1 + 1

1 +Q`
Aµ,T ,̀

) −1 1
1 +Q`

���V1/2
`

〉 〈
|V` |1/2

���
has an eigenvalue of−1. This operator has 1-dimensional range, hence its trace is this eigenvalue, i.e.

−1 = m̃γ`,∆`
µ (T)

〈
|V` |1/2

����� (1 + 1
1 +Q`

Aµ,T ,̀

) −1 1
1 +Q`

�����V1/2
`

〉
.

For any operator S we have

1
1 + S

=

∞∑
k=0

(−S)k = 1 − S
∞∑

k=0
(−S)k = 1 − S

1
1 + S

.

Using this with S = 1
1+Q`

Aµ,T ,̀ and recalling the definition of the scattering length we get

4πa(V`) +
1

m̃γ`,∆`
µ (T)

=

〈
|V` |1/2

����� 1
1 +Q`

Aµ,T ,̀

(
1 + 1

1 +Q`
Aµ,T ,̀

) −1 1
1 +Q`

�����V1/2
`

〉
. (6.5)

We now study the asymptotics of this to conclude the theorem.
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Claim 6.17. The right hand side of equation (6.5) above vanishes as ` → 0.
We prove this below. It follows that

lim
`→0

m̃γ`,∆`
µ (T) = − lim

`→0

1
4πa(V`)

=
−1
4πa

.

However, by lemma 6.15(vi) above we have a subsequence with

lim
`→0

m̃γ`,∆`
µ (T) =

1
(2π)3

∫ 1
K0,∆

T,µ̃γ
−

1
p2 dp.

Thus we get the desired for a subsequence. The uniqueness of the limit points finishes the proof.

This is the following argument.

We may use lemma 6.15 and the argument above on any subsequence of the full sequence and

so get a subsubsequence which converges as desired. The uniqueness of the limit points gives that

any such subsubsequence converges to the same limit. This shows that the full sequence converges

as desired. �

We now give the proofs of claims 6.16 and 6.17.

Proof of claim 6.16. Decompose 1
1+Q`

as

1
1 +Q`

=
1
e`

P` +
1

1 +Q`
(1 − P`)

where we used that φ` is an eigenvector of 1 +Q` with eigenvalue e`. By (A9) the second summand

is uniformly bounded. For Aµ,T ,̀ we have that its kernel is bounded by

|Aµ,T ,̀ (x, y)| ≤ C |V`(x)|1/2 |V`(y)|1/2
∫ ������ 1

Kγ`,∆`
T,µ

−
1
p2

������ (|x − y | |p|)q dp

for any 0 ≤ q ≤ 1. Similarly to the proof of lemma 6.15 (vi) we may prove that the integral is

uniformly bounded in ` for any q < 1. So fix some 1/2 < q < 1. Thus we get thatAµ,T ,̀
2

2 =

∬
|Aµ,T ,̀ (x, y)|2 dx dy ≤ C

∬
|V`(x)| |V`(y)| |x − y |2q dx dy ≤ C`2q ‖V`‖2

L1 .

Thus  1
1 +Q`

(1 − P`)Aµ,T ,̀

 = O(`q).

Now, it remains to show that 1
e`

P`Aµ,T ,̀ vanishes. We have that

P`Aµ,T ,̀
 =  |φ`〉 〈J`φ` |〈J`φ` |φ`〉

Aµ,T ,̀

 =
A†

µ,T ,̀ | J`φ`〉 〈φ` |


| 〈J`φ` |φ`〉 |
=

A†

µ,T ,̀ J`φ`


L2

| 〈J`φ` |φ`〉 |
.

For the function A†

µ,T ,̀ J`φ` we have

���(A†

µ,T ,̀ J`φ`
)
(y)

��� ≤ C |V`(y)|1/2
∬ ������ 1

Kγ`,∆`
T,µ

−
1
p2

������ |V`(x)|1/2(|x − y | |p|)q dp|φ`(x)| dx

≤ C |V`(y)|1/2`q
∫

|V`(x)|1/2 |φ`(x)| dx
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where, similarly as above, the p-integral is bounded uniformly in `. Thus we get thatP`Aµ,T ,̀
 ≤ C ‖V`‖

1/2
L1 `q

��〈 |V` |1/2��|φ` |〉��
| 〈J`φ` |φ`〉 |

= O
(
`q+1/2

)
by assumption (A10). Since |e` | > c` we thus get that 1

1 + V1/2
`

1
p2 |V` |1/2

Aµ,T ,̀

 = O
(
`q−1/2

)
. �

Proof of claim 6.17. We again decompose

1
1 +Q`

=
1
e`

P` +
1

1 +Q`
(1 − P`)

For the second half of the right-hand-side of equation (6.5) we thus have(
1 + 1

1 +Q`
Aµ,T ,̀

) −1 1
1 +Q`

���|V` |1/2〉 = (
1 + 1

1 +Q`
Aµ,T ,̀

) −1 (
1
e`

P` +
1

1 +Q`
(1 − P`)

) ���|V` |1/2〉 .
This first factor is bounded and 1

1+Q`
(1 − P`) is as well by (A9) thus we boundP` |V` |1/2


L2
=

|φ`〉 〈
J`φ`

��|V` |1/2〉L2

| 〈J`φ` |φ`〉 |
=

��〈 |V` |1/2��J`φ`〉��
| 〈J`φ` |φ`〉 |

= O
(
`1/2

)
by (A10). Thus we get that(1 + 1

1 +Q`
Aµ,T ,̀

) −1 1
1 +Q`

���|V` |1/2〉
L2

= O
(
`−1/2

)
.

For the first half we have〈 |V` |1/2��� 1
1 +Q`

Aµ,T ,̀

 = A†

µ,T ,̀
1

1 +Q†

`

|V` |1/2


L2

.

We now decompose

1
1 +Q†

`

=
1
e`

P†

`
+ (1 − P†

`
)

1
1 +Q†

`

=
1
e`

P†

`
P†

`
+ (1 − P†

`
)

1
1 +Q†

`

,

since P2
`
= P`. Thus we should bound the L2-norm of

A†

µ,T ,̀
1

1 +Q†

`

|V` |1/2 =
1
e`

A†

µ,T ,̀ P†

`
P†

`
|V` |1/2 + A†

µ,T ,̀ (1 − P†

`
)

1
1 +Q†

`

|V` |1/2.

The first term is bounded by

1
e`

P`Aµ,T ,̀
 P†

`
|V` |1/2


L2
= O(`q)

by the bounds
P`Aµ,T ,̀

 = O(`q+1/2) and
P`V

1/2
`


L2
= O(`1/2). Also, by (A9), (A4) and the boundAµ,T ,̀

 = O(`q), we get that the second term isO(`q). In total we thus get the boundA†

µ,T ,̀
1

1 +Q†

`

|V` |1/2


L2

= O(`q).

We conclude that the right hand side of equation (6.5) is O
(
`q−1/2

)
in the limit ` → 0. Hence it

vanishes as desired. �
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6.2.2 The Critical Temperature

Now, we turn our attention to theorem 6.12. We have the following.

Lemma 6.18. Let µ > 0 andT < Tc. Let Γ
0
`
= (γ0

`
,0) be a sequence of normal states. Then

lim inf
`→0

m̃
γ0
` ,0
µ (T) >

−1
4πa

.

Proof. This is similar to lemma 6.15. We have

lim
`→0

m̃
γ0
` ,0
µ (T) = m̃0,0

µ̃γ (T)

where µ̃γ and γ are as above. By the proof of proposition 6.9we have that m̃0,0
µ̃γ (T) is decreasing inT .

AtT = Tc it equals
−1
4πa . We conclude the desired. �

Lemma 6.19. Let Γ0
`
= (γ0

`
,0) be a sequence of normal states. Suppose that lim`→0 m̃

γ0
` ,0
µ (T) > −1

4πa .

Then, for small enough ` the operator K
γ0
` ,0

T,µ + V` has a negative eigenvalue.

Together with theorem 6.4 this means that the system is in a superconducting state.

Proof. We use the Birman-Schwinger principle to relate the existence of a negative eigenvalue of

K
γ0
` ,0

T,µ + V` to eigenvalues of some Birman-Schwinger operator, which we then decompose as pre-

viously. Factoring out terms of the form 1 + S as before, we relate this to an inequality between

m̃
γ0
` ,0
µ (T) and the scattering length.

By the Birman-Schwinger principle K
γ0
` ,0

T,µ +V` has an eigenvalue of e ≤ 0 if and only if the asso-

ciated Birman-Schwinger operator V1/2
`

1

K
γ0
`
,0

T ,µ −e
|V` |1/2 has an eigenvalue of −1. We decompose this

operator as

V1/2
`

1

K
γ0
`
,0

T,µ − e
|V` |1/2 = V1/2

`

1
p2 |V` |

1/2 + m̃
γ0
` ,0
µ,e (T)

���V1/2
`

〉 〈
|V` |1/2

��� + Aµ,T ,̀ ,e

where

m̃
γ0
` ,0
µ,e (T) =

1
(2π)3

∫ 1

K
γ0
`
,0

T,µ − e
−

1
p2 dp.

Now,
Aµ,T ,̀ ,e

 = O(`q) as in claim 6.16. We need only check that

∫
|p|q

������ 1

K
γ0
`
,0

T,µ − e
−

1
p2

������ dp ≤

∫
|p|q

������ 1

K
γ0
`
,0

T,µ − e
−

1

K
γ0
`
,0

T,µ

������ dp +
∫

|p|q

������ 1

K
γ0
`
,0

T,µ

−
1
p2

������ dp

is bounded uniformly in `. The second term is fine. For the first we have������ 1

K
γ0
`
,0

T,µ − e
−

1

K
γ0
`
,0

T,µ

������ = |e|

K
γ0
`
,0

T,µ

(
K
γ0
`
,0

T,µ − e
) ≤

|e|
(2T)2

1

κ
(

p2−µ
2T

) (
κ
(

p2−µ
2T

)
− e

2T

) .
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Since this is integrable we get that Aµ,T ,̀ ,e is bounded as desired. As in the proof of theorem 6.7 we

have that

1 + V1/2
`

1
p2 |V` |

1/2 + Aµ,T ,̀ ,e =

(
1 + V1/2

`

1
p2 |V` |

1/2
) ©«1 + 1

1 + V1/2
`

1
p2 |V` |1/2

Aµ,T ,̀ ,e
ª®¬

is invertible for small `. This follows from a suitably changed reformulation of claim 6.16, the proof

of which follows by the bound
Aµ,T ,̀ ,e

 = O(`q) above and the proof of claim 6.16. Thus, similarly

as before we get that K
γ0
` ,0

T,µ + V` has an eigenvalue e < 0 if and only if

4πã`,e :=
〈
|V` |1/2

������ 1
1 + V1/2

`
1
p2 |V` |1/2 + Aµ,T ,̀ ,e

������V1/2
`

〉
=

−1

m̃
γ0
`
,0

µ,e (T)
.

We claim that for small enough ` this equation has a solution e < 0.
First, we show that lim` 4πã`,e = 4πa. This is similar to the discussion preceding claim 6.17. We

compute

4πa(V`) − 4πã`,e =
〈
|V` |1/2

���� 1
1 +Q`

−
1

1 +Q` + Aµ,T ,̀ ,e

����V1/2
`

〉
=

〈
|V` |1/2

�����
(
1 −

(
1 + 1

1 +Q`
Aµ,T ,̀ ,e

) −1
)

1
1 +Q`

�����V1/2
`

〉
=

〈
|V` |1/2

����� 1
1 +Q`

Aµ,T ,̀ ,e

(
1 + 1

1 +Q`
Aµ,T ,̀ ,e

) −1 1
1 +Q`

�����V1/2
`

〉
wherewe again used that 1

1+S = 1− S 1
1+S for any operator S. This vanishes similarly as in claim 6.17.

Thus, lim 4̃πa`,e = 4πa as desired.

Now, m̃
γ0
` ,0
µ,e is easily seen tobe increasing in e and (−∞,0] 3 e 7→ m̃

γ0
` ,0
µ,e (T)has image

(
−∞, m̃

γ0
` ,0
µ

]
.

By assumption lim` m̃
γ0
` ,0
µ (T) > −1

4πa . Now, ã`,e is continuous in e. To see this, note that the resolvent
1

K
γ0
`
,0

T ,µ −e
is continuous in e andso m̃

γ0
` ,0
µ,e (T) is. Thusweconclude theexistenceof a solutionof theabove

equation for ` sufficiently small and thus the existence of a negative eigenvalue for K
γ0
` ,0

T,µ + V`. �

Now, wemay combine this to prove theorem 6.12.

Proof of theorem 6.12. Part (i) is clear from lemmas 6.18 and 6.19 and theorem 6.4.

For part (ii) suppose for contradiction that for some sequence of `’s going to zero, we have that

for the minimisers α` . 0. Then by theorem 6.7 the limit (γ, µ̃γ,∆) satisfies the equations

µ̃γ = µ −
V

(2π)3/2

∫
1 −

p2 − µ̃γ

K0,∆
T,µ̃γ

dp, and
−1
4πa
=

1
(2π)3/2

∫ 1
K0,∆

T,µ̃γ
−

1
p2 dp.

We show that these equation does not have a solution forT > Tc.

Seeing the first equation as defining a function µ̃γ(∆) indirectly, we saw in the proof of theo-

rem 6.7 that this function is decreasing in ∆. Moreover, the right-hand-side of the second equation

is increasing in µ̃γ and decreasing in∆. Thus, decreasing∆ to 0 we get

−1
4πa

≤
1

(2π)3

∫ tanh p2−µ̃0
2T

p2 − µ̃
γ
0

−
1
p2 dp. (6.6)
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where

µ̃
γ
0 = µ −

V

(2π)3/2

∫
1 −

p2 − µ̃
γ
0

K0,0
T,µ̃0

dp = µ −
2V

(2π)3/2

∫ 1

1 + exp
(

p2−µ̃γ0
T

) dp

is the value of the function µ̃γ(∆) at ∆ = 0. In the proof of proposition 6.9 we saw that the right-

hand-side of equation (6.6) is decreasing inT and equal to −1
4πa atT = Tc. We conclude thatT ≤ Tc.

Contradiction. Hence, for sufficiently small ` we have that the system is not superconducting. �

7 More General Interaction

In this section we explore to what extent wemay prove earlier results for a different class of interac-

tion operators. Wewill consider the setting where the potential operators no longer is a multiplica-

tion operator.

InBCS’s original article [4] they consider an interaction termgivenbyanoperatorV with integral

kernel V(x, y) = −V0φ(x)φ(y), where φ̂(p) = 1{|p2−µ|<h}(p) and V0 > 0 is some positive constant,

see [16]. We change the interaction term of the BCS functional equation (2.2) from
∫

V |α |2 dx to

the more general 〈α |V |α〉 , which is meaningful for such more general operators V . Thus the BCS

functional is

F (Γ) :=
∫

(p2 − µ)γ(p) dp + 〈α |V |α〉 − TS(Γ).

This section is new and based my own work, partially inspired by [19], meaning that the technical

constructions in some the proofs in this section are from there.

7.1 The Potentials Under Study

We describe the set of potentials, that wewill investigate. These will be some setV of operators. In

this section we define this setV and describe some of its elements.

The set V is a subset of the quadratic forms on H1. Any quadratic form on H1 is a bounded

operator H1 → H−1 and so we have the topology induced by the norm

‖V ‖B(H1,H−1) = sup
‖α‖H1≤1

‖Vα‖H−1 = sup
‖α‖H1,‖ β‖H1≤1

| 〈β|V |α〉 | .

Note that if Vn → V in this norm then 〈α |Vn − V |α〉 → 0 uniformly in (norm-)bounded α ∈ H1.
This is the main aspect of this topology, that we will use. (By a simple polarisation argument this is

even equivalent toVn → V in the norm above.)

Wedefine the setV to be the closure (in this norm) of the set of selfadjoint reflection-symmetric

operators (we define this below) with real-valued kernel V(x, y) ∈ L6/5(R3 × R3) + L2(R3 × R3),
meaning thatV = v+w can be split with v having an L6/5-kernel andw having an L2-kernel, where

both v(x, y) and w(x, y) are real-valued. That is,

V =
{
Selfadjoint and reflection-symmetricV with real-valued kernelV(x, y) ∈ L6/5 + L2

}
.

Now, to define what it means for an operatorV to be reflection-symmetric.

Definition 7.1. Let u be a distribution and let T be an operator with form-domainH ⊂ L2. (Thus
for some ψ ∈ H wemay have thatTψ ∈ H ∗ is a proper distribution.) We say that

• ψ ∈ C∞
0 is reflection-anti-symmetric if ψ(−x) = −ψ(x) for all x.
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• u is reflection-symmetric if 〈u,ψ〉 = 0 for all reflection-anti-symmetric ψ ∈ C∞
0 .

• T is reflection-symmetric ifTψ is reflection-symmetric for all reflection-symmetric ψ ∈ H .

Note that the condition for a distribution to be reflection-symmetric is the same as u(x) = u(−x)
for a.e. x, when u is also a function. Also, the property of an operator being reflection-symmetric is

closed in the topology above. Moreover, if an operator V has kernel and if, say V(x, y) = V(−x, y)
for all x, y or V(x, y) = V(−x,−y) for all x, y, then V is reflection-symmetric. Additionally, for the

kernelV(x, y) = −V0φ(x)φ(y) discussed above, we have that φ̂ ∈ L2 and soV(x, y) ∈ L2. It is also
reflection-symmetric, and soV ∈ V .

We would ideally want, thatV encompasses the multiplication operators studied in sections 2

to 6. (The results of this section of course applies to such multiplication operators. This is just the

results in [19] referenced in those sections. Here we just consider the question, as to whether these

operators are includedhereaswell.) This ishowevernot clear. Wenowprove thatV indeedcontains

the multiplication operatorsV ∈ L3/2. First, we give somemotivation for why this is not so trivial.

Amultiplication operatorV ∈ L3/2 does not have an integral kernel. Formally, its kernel is given

by V(x)δ(x − y), which is of course not a function. We can, however, approximate the δ-function
as t−3χ((x − y)/t) for some small t > 0 and a compactly supported function χ. Such operators do

converge to amultiplication operator, just not in a sense as strong as needed.

In order to state this result we first define the following. For any compactly supported positive

χwith
∫
χ dx = 1we define χt(x) := t−3χ(x/t).

Proposition 7.2. Let V ∈ L3/2 and define Vt for t > 0 by Vt(x, y) = V(x)χt(x − y). Then for every

α, β ∈ H1 we have 〈β |Vt |α〉 → 〈β|V |α〉 as t → 0.

Proof. First, χt ∗ α → α in L6 as t → 0 by [8, Thm. 8.14]. Thus, an application of Hölder’s and

Sobolev’s inequalities [19, Thm. 8.3] give the desired. �

In order to conclude that V ∈ V we need the convergence to be uniform in α and β. The problem
is that the convergence is not uniform in α. The error in the dominated convergence part of the

argument (which is how [8, Thm. 8.14] is proved) can only easily be bounded by something like

ε ‖∇α‖ L6 through a Taylor expansion. This is of course not uniformly bounded in α ∈ H1.
Note that the kernelVt(x, y) = V(x)χt(x−y) ∈ L6/5+L2. This follows fromthegeneral inclusion

Lp ⊂ Lq + Lr for any triple q < p < r , which can be seen by decomposing a function f ∈ Lp as

f 1{| f |>1} + f 1{| f |≤1} ∈ Lq + Lr .

Refining this type of argument, we do however get somemultiplication operators. IfV ∈ Lp for

some larger p, then we could get the error term to be of the form ε ‖∇α‖ L2 , which would be fine.

This is the extent of the following. The proof will however not go through such a Taylor expansion

argument.

Proposition 7.3. LetV ∈ L2 ∩ L3 be real-valued and reflection-symmetric. ThenV ∈ V .

The assumptionV ∈ L2∩ L3 is theweakestwe canmake for an argument like this towork. Weneed

V ∈ Lp for a small enough p such that the approximating kernels are in L6/5+L2. Thismeans p ≤ 2.
Also we need V ∈ Lq for a large enough q such that Hölder’s inequality will give the right powers

for the α-norms. This means q ≥ 3. The smallest set of the form Lp ∩ Lq with these restrictions is

L2 ∩ L3.
This (in some sense) weaker result is what we will use to show thatV ∈ L3/2 satisfiesV ∈ V .

Proof. DefineVt byVt(x, y) = V(x)χt(x − y), where χt is as above for a specific choice of χwhichwe

give below. Note that sinceV ∈ L2 we haveVt ∈ V . Then

| 〈β |V − Vt |α〉 | =

����∫ β(x)V(x) (χt ∗ α(x) − α(x)) dx
���� ≤ ‖ β‖ L6 ‖V ‖ L3 ‖ χt ∗ α − α‖ L2 .
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Sobolev’s inequality [19, Thm. 8.3] takes care of the first factor. For the last factor we have

‖ χt ∗ α − α‖2
L2 =

(2π)3/2 χ̂t α̂ − α̂
2

L2

=

∫ ���((2π)3/2 χ̂t(p) − 1
)
α̂(p)

���2 1 + p2

1 + p2 dp

≤

 (2π)3/2 χ̂t − 1
1 + p2

2

L∞

‖α‖2
H1 .

We nowwant to show that the first factor vanishes as t → 0. For this we choose

χ(x) =
1
|x |1B(0,1)(x)∫
B(0,1)

1
|y | dy

=
1

2π |x |1B(0,1)(x).

Then we compute

g(p) := (2π)3/2 χ̂t(p) − 1
1 + p2 =

2
(|p|t)2 (1 − cos(|p|t)) − 1

1 + p2 .

Let ε > 0. Since the numerator vanishes in pt → 0 wemay find q0 such that for |p|t < q0 we have

that |g(p)| < ε. Thenumerator also vanishes in |p|t → ∞ and so it is globally boundedbya constant

C. Now find p0 such that for |p| > p0 we have C
1+p2 < ε. Then for t < t0 := q0

p0
we have |g(p)| < ε

for all p. This shows that ‖g‖ L∞ → 0 as t → 0. Hence this shows the desired. �

Now, we are ready to show thatV ∈ L3/2 indeed satisfiesV ∈ V .

Proposition 7.4. LetV ∈ L3/2 be real-valued and reflection-symmetric. ThenV ∈ V .

Proof. Wemay approximateV by L2 ∩ L3 functions as follows. Define for δ > 0 the functions

V δ(x) =

{
V(x) if |V(x)| ≤ 1

δ ,

0 if |V(x)| > 1
δ .

Then V δ ∈ L3/2 ∩ L∞ ⊂ L2 ∩ L3 so Vδ ∈ V and by dominated convergence we have V δ → V in

L3/2 as δ → 0. We have for any α, β ∈ H1 that

��〈β��V − V δ
��α〉�� ≤ ∫

|β(x)| |V(x) − V δ(x)| |α(x)| dx

≤
V − V δ


L3/2 ‖α‖ L6 ‖ β‖ L6 ≤ C

V − V δ


L3/2 ‖α‖H1 ‖ β‖H1

by Sobolev’s inequality [19, Thm. 8.3]. This gives the desired. �

Byasimilarapproximationargument, onemayshowthatany (real-valuedandreflection-symmetric)

V ∈ L∞
ε satisfiesV ∈ V . This is the other class ofV ’s under study in [19]. Here L∞

ε denotes the L∞

functions vanishing weakly, in the sense that {|V | > ε} has finite measure for any ε > 0.
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7.2 Minimisers and the Linear Criterion

Now, we turn our attention to proving the results of section 3 for potentials V ∈ V . The proof of

theorem3.1 (existence ofminimisers) carries overwithout change oncewe prove that for anyV ∈ V

• If αn converges weakly to α ∈ H1, then 〈αn |V |αn〉 → 〈α |V |α〉 , and

• The operator p2 + V is bounded from below.

This is the extent of the following.

Proposition 7.5. LetV ∈ V . Suppose αn converges weakly to α in H1. Then 〈αn |V |αn〉 → 〈α |V |α〉 .

The general idea of this proof is from [19, Thm. 11.4]. We generalise this proof to our setting.

Proof. By a simple approximation argument exactly as the one we do below for v and w we may

assume thatV = v + w with v having an L6/5-kernel and w having an L2-kernel.
By the uniform boundedness principle [8, Thm. 5.13] we have that ‖αn‖H1 ≤ C is bounded

independent of n. Define for all δ > 0 the operators vδ,wδ to have integral kernels

vδ(x, y) =

{
v(x, y) if |v(x, y)| ≤ 1/δ,
0 if |v(x, y)| > 1/δ.

, wδ(x, y) =

{
w(x, y) if |w(x, y)| ≤ 1/δ,
0 if |w(x, y)| > 1/δ.

respectively. Note that both of these kernels are bounded. Also, by dominated convergence we have

vδ(x, y) → v(x, y) in L6/5 and wδ(x, y) → w(x, y) in L2. Then, by Sobolev’s inequality [19, Thm.

8.3] ��〈αn
��v − vδ

��αn
〉�� ≤ ‖αn ⊗ αn‖ L6(R3×R3)

v − vδ


L6/5(R3×R3)
≤ C ‖αn‖

2
H1

v − vδ


L6/5 ≤ Cδ

for a constantCδ independent of n, satisfyingCδ → 0 as δ → 0. Also��〈αn
��w − wδ

��αn
〉�� ≤ ‖αn‖

2
L2

w − wδ


L2 ≤ ‖αn‖
2
H1

w − wδ


L2 ≤ Cδ

for a (potentially different) constant Cδ also satisfying Cδ → 0 as δ → 0. Hence it suffices to prove
that

〈
αn

��vδ��αn
〉
→

〈
α
��vδ��α〉

and
〈
αn

��wδ
��αn

〉
→

〈
α
��wδ

��α〉
.

Define for all ε > 0 the sets

Aε = {(x, y) ∈ R3 × R3 : |v(x, y)| > ε}, and Bε = {(x, y) ∈ R3 × R3 : |w(x, y)| > ε}.

Then we have that |Aε |, |Bε | < ∞ and wemaywrite〈
αn

��vδ��αn
〉
=

〈
αn

��vδ1Aε

��αn
〉
+

〈
αn

��vδ1Ac
ε

��αn
〉
,〈

αn
��wδ

��αn
〉
=

〈
αn

��wδ1Bε

��αn
〉
+

〈
αn

��wδ1Bc
ε

��αn
〉
.

For the second terms, wemay by the same arguments as above bound��〈αn
��vδ1Ac

ε

��αn
〉�� ≤ C

1Ac
ε
vδ


L6/5 ≤ C

1Ac
ε
v


L6/5 ,��〈αn
��wδ1Bc

ε

��αn
〉�� ≤ C

1Bc
ε
wδ


L2 ≤ C

1Bc
ε
w


L2 .

Both of these converge to 0 as ε → 0 by dominated convergence.

Now, for thefirst termswehaveby [19, Thm. 8.6] thatαn⊗αn → α⊗α strongly in Lp(Aε) for any
p < 3. Hence fix such a 1 < p < 3. Since 1Aεv

δ(x, y) ∈ L∞(Aε)we have that 1Aεv
δ(x, y) ∈ Lp′(Aε)

for p′ the dual exponent. We conclude that
〈
αn

��1Aεv
δ
��αn

〉
converges to

〈
α
��1Aεv

δ
��α〉

as desired. The

same argument applied to Bε and wδ gives that
〈
αn

��1Bεw
δ
��αn

〉
converges to

〈
α
��1Bεw

δ
��α〉

. Putting

everything together we conclude the proposition. �

64



7.2 Minimisers and the Linear Criterion

Proposition 7.6. LetV ∈ V . Then p2 + V is bounded from below.

The general idea of this proof is from [19, Thm. 11.3]. We generalise this proof to our setting.

Proof. Again, wemay by a simple approximation argument assume thatV = v +wwith v having an

L6/5-kernel and w an L2-kernel.
Define for λ ∈ R the function hλ = −(v − λ)− = min{v − λ,0}. Note that hλ → 0 pointwise

for λ → −∞. Hence by dominated convergence we have
hλ0


L6/5 ≤ 1

2S3
for some λ0, denote this

function by h := hλ0 . Here S3 is the constant from Sobolev’s inequality [19, Thm. 8.3]. Thus, by a

similar argument as above, using Sobolev’s inequality [19, Thm. 8.3], we get that

| 〈ψ |h|ψ〉 | ≤ ‖h‖ L6/5 ‖ψ ⊗ ψ‖ L6 ≤
1
2 ‖∇ψ‖2

L2 =
1
2

〈
ψ
��p2��ψ〉

for any function ψ. Thus, for any ψ with ‖ψ‖ L2 = 1we have〈
ψ
��p2 + V

��ψ〉
=

〈
ψ
��p2 + (v − λ0) + λ0 + w

��ψ〉
≥

〈
ψ
��p2 + h

��ψ〉
+ λ0 − ‖w‖ L2

≥
1
2

〈
ψ
��p2��ψ〉

+ λ0 − ‖w‖ L2 > −∞. �

We conclude that the result of theorem 3.1 holds.

Corollary 7.7. LetV ∈ V and let µ ∈ R. Then

F (Γ) =

∫
(p2 − µ)γ(p) dp + 〈α |V |α〉 − TS(Γ)

is bounded from below and attains its minimum on

D =

{
Γ(p) =

(
γ(p) α̂(p)
α̂(p) 1 − γ(−p)

)
: α ∈ H1(R3), γ ∈ L1 (

R3, (1 + p2) dp
)
, 0 ≤ Γ ≤ 1

}
.

Moreover, a minimising Γ = (γ,α) satisfies the BCS gap equation

(K∆T + V)α = 0

where

K∆T (p) =
E∆(p)

tanh
(

E∆(p)
2T

) , E∆(p) =
√
(p2 − µ)2 + |∆(p)|2, ∆ = 2V̂α.

Remark 7.8. ForV ’s with kernel we can of course formulate a gap equation for∆ in much the same

way. We get

−∆(p) =
∫

R3
V̂(p,−q)

∆(q)
K∆T (q)

dq.

Thenormalisation here is different than that of theorem3.1, since the Fourier transformof the kernel

ofV is taken in the spaceR3 × R3.

Now, to restate theorem 3.7 in this new setting.

Theorem 7.9. LetV ∈ V , let µ ∈ R and let 0 ≤ T < ∞. Then the following are equivalent

(i) The normal state Γ0 is not stable, i.e. infΓ∈D F (Γ) < F (Γ0),

(ii) There exist Γ = (γ,α)with α , 0 non-vanishing satisfying the BCS gap equation, (K∆T + V)α = 0
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(iii) The linear operator K0
T + V has at least one negative eigenvalue.

The proof carries over without change once we prove that

Proposition 7.10. LetV ∈ V . Then the essential spectrum of p2 + V is contained in [0,∞).

This follows from(a sufficient generalisationof) [19, Thms. 11.5 and 11.6],whichwenowstate. Define

E(ψ) :=
〈
ψ
��p2 + V

��ψ〉
, E0 := inf

{
E(ψ) : ψ ∈ H1, ‖ψ‖ L2 = 1

}
Defineψ0 ∈ H1 to be an (L2-normalised) function satisfying E(ψ0) = E0, should one such function

exist. Define inductively Ek and ψk by

Ek := inf
{
E(ψ) : ψ ∈ H1, ‖ψ‖ L2 = 1, 〈ψ |ψi〉 = 0, i = 0, . . . , k − 1

}
, E(ψk) = Ek

should they exist.

Proposition 7.11. LetV ∈ V .

• Suppose that E0 < 0. Then ψ0 exists, and moreover (p2 + V)ψ0 = E0ψ0 distributionally.

• Suppose that Ek < 0 for some k (meaning that also ψi exists for all i < k). Then ψk exists and

(p2 + V)ψk = Ekψk distributionally.

In the sequence of the eigenvalues Ek , each Ek occurs only finitely many times.

It follows that any negative spectral value (i.e. element of the spectrum) of p2+V is indeed an eigen-

value with finite multiplicity. Thus, the essential spectrum of p2 + V is contained in [0,∞).

The proof is essentially the same as that of [19, Thms. 11.5 and 11.6], only we need to refer to

propositions 7.5 and 7.6. instead of [19, Thms. 11.3 and 11.4]. We reproduce a sketch here for conve-

nience.

Proof. First forE0. Letψ
j beaminimising sequenceof L2-normalised functions. Thenby thebounds

in proposition 7.6 we see that
ψ j


H1 is uniformly bounded, hence for a subsequence it converges

weakly to someψ0 ∈ H1. In particularweakly in L2 and so ‖ψ0‖ L2 ≤ 1. By theweak continuity ofV ,

proposition 7.5, and weak lower semi-continuity of the normwe thus get E(ψ0) ≤ lim E(ψ j) = E0.
Hence

E0 ‖ψ0‖ L2 ≤ E(ψ0) ≤ E0 < 0.
So ‖ψ0‖ L2 = 1 and so ψ0 is a minimiser. Let now φ ∈ C∞

0 be arbitrary and consider

R(ε) =
E(ψ0 + εφ)

‖ψ0 + εφ‖
2
L2

.

This is a ratio of polynomials in ε and thus differentiable. Its minimum is achieved at ε = 0. Hence,
by computing d

dεR(ε)
��
ε=0 = 0we get〈

ψ0
��p2 + V

��φ〉 = E0 〈ψ0 |φ〉 .

This gives the desired for E0. The argument for the other energies are similar.

To see that each Ek has finite multiplicity, suppose not, i.e. suppose that there is some k with

Ek = Ek+1 = . . .. Then ψk,ψk+1, . . . are all mutually orthogonal, hence converge weakly to 0 in

L2. Additionally, their H1-norms are uniformly bounded, so ψ j converge weakly to H1 for a subse-
quence. This limit must then also be 0. By the weak continuity ofV we get

Ek = E(ψk) = lim E(ψ j) = lim
〈
ψ j

��p2��ψ j
〉
+

〈
ψ j

��V ��ψ j
〉
≥ 0.

Contradiction. Hence each Ek has only finite multiplicity. �
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7.3 The Critical Temperature

7.3 The Critical Temperature

One might guess that similar asymptotic formulas as the ones in section 4 hold also in this case.

This we have not been able to prove. For the limit of weak coupling the proofs of section 4 are hard

to generalise. We sketch here some of the key difficulties.

Firstly, the operatorVµ : L2(Ωµ) → L2(Ωµ) is difficult to define. The integral formulation

Vµu(p) =
1

(2π)3/2
1
√
µ

∫
Ωµ

V̂(p − q)u(q) dω(q)

(here for a potentialV ∈ L1∩ L3/2) simply does notwork. Sure, V̂ might be defined (for aV ∈ V) as

a kernel in some Lp-space, but its restriction to a nullset, the Fermi-sphere, is nonsensical. Secondly,

the operator |V |1/2 does not map into L1 and so the operatorF |V |1/2 : L2 → L2(Ωµ) is difficult to
define.

Additionally, our attempts at generalising lemma 4.5 has failed. That is, decomposing 1
KT

as in

the proof of lemma 4.5 does not give useful bounds. It is even unclear what reasonable assumptions

one couldmake, such that these proofs would generalise.

For the case of low density there are alsomany immediate issues. For instance, one needs to find

another definition for the scattering length

a =
1

4π

〈
|V |1/2

����� 1
1 + V1/2 1

p2 |V |1/2

�����V1/2

〉
since this definition does not make sense for the more generalV ’s.

8 Ginzburg-Landau Theory

In this section we give a brief recount of the link between BCS theory and Ginzburg-Landau theory.

This is presented in [10] and the other papers referenced in [15]. The main takeaway is that in some

limit, BCS theory gives Ginzburg-Landau theory. The setting is that the external fields A andW are

varying slowly in comparison to the internal interactionV . This is done by introducing a small pa-

rameter h and a rescaling. The BCS functional becomes

F (Γ) = Tr
[ (
(−ih∇ + hA(x))2 − µ + h2W(x)

)
γ
]
−TS(Γ)+

∬
[0,1]3×R3

V(h−1(x−y))|α(x, y)|2 dx dy

where the trace is per unit volume and Γ is assumed to be periodic. Additionally we have the as-

sumptions

Assumption 8.1. We assume thatW and A are 1-periodic and that their Fourier coefficients satisfy∑
p

|Ŵ(p)| < ∞,
∑

p

| Â(p)|(1 + |p|) < ∞.

In particularW is bounded and A isC1. Additionally we assume thatV(−x) = V(x), thatV ∈ L3/2,
thatTc > 0 and that the operator KTc + V has a non-zero eigenvector α0 with eigenvalue 0.

We define the Ginzburg-Landau functional as in [15]

EGL(ψ) =

∫
[0,1]3

| (−i∇ + 2A(x))ψ(x)|2 + λ1W(x)|ψ(x)|2 − λ2D |ψ(x)|2 + λ3 |ψ(x)|4 dx.
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Hereψ ∈ H1
per, the periodic functions in H1

loc
and D, λ1 ∈ R and λ2, λ3 > 0. We define a normal state

Γ0 to be a minimiser of the non-interacting BCS functional, i.e. with V = 0. We are now ready to

state the theorem linking BCS and Ginzburg-Landau theory

Theorem 8.2 ([15, Thm. 4.1], original paper is [10, Thm. 1]). Let D ∈ R and T = Tc(1 − Dh2). Then
there exists a λ0 > 0 and parameters λ1, λ2, λ3 in the Ginzburg-Landau functional such that

inf
Γ
F (Γ) = F (Γ0) + λ0h inf

ψ∈H1
per

EGL(ψ) + o(h)

as h → 0.
Moreover, if Γ = (γ,α) satisfies F (Γ) ≤ F (Γ0) + λ0h infψ EGL(ψ) + o(h), i.e. Γ is an approximate

minimiser, then there exists a ψ0 ∈ H1
per with E

GL(ψ0) ≤ infψ EGL(ψ) + o(1) such that the Cooper-pair

wavefunction α satisfies

‖α − αGL‖
2
L2 ≤ o(1) ‖αGL‖2

L2 = o(1)h−1,

where αGL is given by

αGL(x, y) =
1

2h2 (ψ0(x) + ψ0(y))
1

(2π)3/2
α0((x − y)/h).

9 Conclusion and Perspective

Wehave here given an overview of the richmathematical structure relating to the BCS theory of su-

perconductivity. First, in section 2we setup themodel and in section 3 showedboth thatminimisers

exist, and that they satisfy a certain BCS gap equation. We introduced the critical temperature, and

showed that it satisfied a certain linear criterion. Next, in section 4we studied this critical tempera-

ture in both the limit of weak coupling and the limit of low density. Here we proved asymptotic for-

mulas for the critical temperature. In section 5we subsequently studied the energy gap and showed

that, both in the limit of weak coupling and in the limit of low density it satisfied an asymptotic

formula like that of the critical temperature. Moreover, the ratio of the two converged to the same

universal constant in both cases.

After this treatment of the model we considered the validity of the assumptions made. The first

to consider was the omission of the direct and exchange terms. In section 6 we included these and

saw how the model changed. We considered short-range potentials and showed that for such, this

inclusion of the direct and exchange terms in some sense only led to a renormalisation of the chem-

ical potential. Next, in section 7 we dealt with the assumption that the interaction term was given

by a multiplication operator. We considered more general operators and showed that the results of

section 3 hold in this case also.

Lastly, in section8webrieflymentioned the link betweenBCS theory andGinzburg-Landau the-

ory. This is also a topic, where much further work could be done. Here we only stated the link for

slowly-varying external fields. Studying this model with less restrictive conditions on the external

fields is an interesting problem for further study.

Additionally, much work could be done on the validity of the assumptions. In particular, it is

interesting inwhat sense (or even if) the asymptotic results of sections 4 and 5 hold formore general

potentials.
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