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Abstract
The purpose of this thesis is to classify the irreducible projective unitary representations
of the Poincaré Group. The thesis first gives the needed introductory definitions and
results to both understand and solve the problem. The concept of lifting representations
is discussed, and it is proven that an equivalent problem is to classify the irreducible
unitary representations of the covering group of the Poincaré Group. By the method
of induced representations these are classified in the positive mass and positive energy
case. Conclusively we provide an example of such induced representation, namely the
Dirac Equation for positive mass and spin-1/2.
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1 Introduction

Classifying the irreducible projective unitary representations of the Poincaré Group is
a way of combining the special relativistical invariance of the Poincaré Group and the
quantum mechanical invariance of unitary and projective unitary operators. The idea
of trying to combine special relativity and quantum mechanics is an interesting one,
which might cross ones mind after learning of both theories.

The problem is to understand how Poincaré tranformations should transform quan-
tum mechanical systems. An investigation of this naturally leads to the problem of
classifying the projective unitary representations of the Poincaré Group. We restrict
ourselves to the irreducible projective unitary representations, as these correspond to
elementary particles [6, p. 19]. Certain parameters of the representation will then
correspond to the mass and spin of the corresponding particle.

Any representation comes with an attached Hilbert space. For the physical interpre-
tation this Hilbert space can be seen as the state-space of the corresponding elementary
particle. We will not delve deeper into this interpretation (or any other for that matter)
but only quote it as motivation.

We present the subject matter with a lot more detail than the source, [8], on which
much of our work is based. We give proofs and more detailed and precise constructions
of numerous of the smaller, but nonetheless quite important, and some of the larger
results. The proofs of these results in [8] are either missing or lack important details,
many of which we provide here. We follow more closely the presentation made in [8]
than in [6] as the presentation made in [6] uses results from the general theory of Lie
groups and Algebras. The introduction to, and proofs of, these results are beyond the
scope of this project.

In the first section (section 2) we introduce the objects of study, in particular the
Poincaré group and representation theory. We will also need some Lie group theory,
and we conclude the section by giving some elementary results about Lie groups and
algebras. we provide proofs of some of the basic results. In particular, we provide a
definition for irreducibility in the projective case and discus how irreducibility plays
with the lifting of representations. This section is mainly based on [4, 6, 8]. Finally,
we provide our own elementary proof of the result that SO(3) is not simply connected.
This is a result we have been unable to find an elementary proof of in the literature.

In the subsequent section (section 3) we investigate how certain properties of the
Lie algebra of a Lie group allow us to lift all projective unitary representations of
the group to unitary representations of the covering group. We prove that the Lie
algebra of the Poincaré Group has this particular property and thus that, in order
to classify the irreducible projective unitary representation of the Poincaré Group, we
may equivalently classify the irreducible unitary representation of the covering group.
We give our own proofs of some of the minor results, in particular how irreducibility
works with this lifting and that SL2(C) is simply connected. This section is mainly
based on [8].

In the penultimate section (section 4) we classify the irreducible unitary repre-
sentations of the covering group of the Poincaré Group by the method of induced
representations. We do not prove the result that any such representation arises (up
to equivalence) as an induced one. A proof of this result is beyond the scope of this
project, as we have chosen to focus differently. One may prove this result by developing
the theory of systems of imprimitivity and linking irreducible unitary representations
to systems of imprimitivity, see [1]. Motivated by this result we classify all the induced
representation in the positive mass and energy case. This case together with the case
of zero mass are the physically most interesting cases. They correspond to ordinary
non-zero mass particles and zero-mass particles, for instance photons, respectively [6,
p. 63]. Our presentation provides a clearer exposition of this construction and provides
a proof for the main lemma for proving the irreducibility. This section is mainly based
on [6, 8].

In the final section (section 5) we give an example of an induced representation,
namely the Dirac Equation for non-zero mass and spin-1/2. This section is mainly
based on [8].
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2 INTRODUCTORY DEFINITIONS AND RESULTS

2 Introductory Definitions and Results

In this section we give the necessary definitions and introductory results for the back-
ground of the main scope of the thesis: “Finding the irreducible representations of the
Poincaré group”. For this we need to define both what the Poincaré group is and what
representations are.

To motivate why this problem is interesting we include the mathematics of quantum
mechanics and projective Hilbert spaces.

2.1 Special Relativity and the Lorentz Group

We recall some basic notions from special relativity and define the main component of
the Poincaré group, namely the Lorentz group. This section is based on [6, p. 1-3] and
[8, p. 43-47].

Definition 2.1. An element x = (x0, �x) ∈ R4 is called an event. We say that x0 is
the time of the event (we work in units were c = 1), and �x = (x1, x2, x3) is the spatial
coordinates of the event.

Definition 2.2. The Lorentz metric is the bilinear symmetric function 〈−,−〉 : R4 ×
R4 → R defined by

〈x, y〉 = x0y0 − x1y1 − x2y2 − x3y3 = x0y0 − �x · �y.

R4 equipped with this “metric” is called spacetime or Minkowski space.

Definition 2.3. An event x ∈ R4 is

• time-like if 〈x, x〉 > 0,

• light-like if 〈x, x〉 = 0,

• space-like if 〈x, x〉 < 0.

Note that we may express 〈−,−〉 in terms of the Minkowski metric η = (ηµν),

ηµν =


1, if µ = ν = 0

−1, if µ = ν 6= 0
0, if µ 6= ν.

Then 〈x, y〉 =
∑

µ,ν gµνx
µyν. Thinking of η as a matrix, this is 〈x, y〉 = xTηy.

Proposition 2.4. The relation ∼ on the time-like events {x ∈ R4| 〈x, x〉 > 0} defined
by x ∼ y if 〈x, y〉 > 0 is an equivalence relation with two equivalence classes.

Proof. The relation is clearly reflexive and symmetric. For transitivity note the fol-
lowing. For any x, y time-like events, x0, y0 6= 0. Moreover, the defining property gives
that (x0)2 − ‖�x‖2 > 0. Suppose that sgn x0 = sgny0. Then x0y0 > 0 and we get by
Cauchy Schwartz (on the regular R3 inner product)

(�x · �y)2 ≤ ‖�x‖2 ‖�y‖2 < (x0)2(y0)2.

By extracting square roots we conclude that 〈x, y〉 > 0. Similarly we may get that
if sgn x0 6= sgny0 then 〈x, y〉 < 0. Hence all x with the same sign zeroth coordinate
are related and those with different sign zeroth coordinate are not. It follows that
∼ is transitive. The equivalence classes are those with positive resp. negative zeroth
coordinate. [(1, 0, 0, 0)] resp. [(−1, 0, 0, 0)]. Since any timelike x has x0 6= 0 we see that
these are all the equivalence classes.

The equivalence classes in the above proposition, [(1, 0, 0, 0)] and [(−1, 0, 0, 0)], are called
the future resp. the past corresponding to how a particle at rest will have worldline
(t, 0, 0, 0), t ∈ R, with positive zeroth coordinate for future times t.
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2.1 Special Relativity and the Lorentz Group

Figure 1: The future and the past. Drawn are also different worldlines for a particle. The
causality is upwards. The light-cones (for the point (0, 0, 0, 0)) are drawn as well. They are
the boundaries for the time-like events.

Definition 2.5. A Lorentz transformation is a linear map Λ : R4 → R4 preserving the
“distance” i.e.

〈Λx,Λy〉 = 〈x, y〉
for all x, y ∈ R4. With the metric η this is equivalent to the equations (by letting x, y
run through a basis) ∑

µ,ν

Λµ
ρηµνΛ

ν
τ = ηρτ (1)

for ρ, τ ∈ {0, 1, 2, 3} i.e. ΛTηΛ = η if we think of η as a matrix with the same indices as
η. These equations are all written out in full in the appendix, see section A.1.

When we assume that light has a finite speed (here c = 1), which is the same in
all (inertial) coordinate systems, we get the results from special relativity, stating
that any coordinate transformation must preserve the Lorentz metric. The classical
transformations, the Galilei transformations [9, p. 1226], does not preserve this metric
hence we need to consider another type of coordinate transformations, namely the
Lorentz transformations.

The equations (1) are in particular for ρ = τ = 0

(Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1.

Since Λ has real entries we conclude that Λ0
0 ≥ 1 or Λ0

0 ≤ −1.
Thinking of η as a matrix we get

1 = −det η = −det(ΛTηΛ) = −det η(detΛ)2 = (detΛ)2.

We conclude that Λ is invertible and moreover that detΛ = ±1.
Note that the Lorentz transformations with the composition of matrix multiplica-

tion form a group. This is a straightforward calculation

Definition 2.6. The group of Lorentz transformations is called the Lorentz group and
is denoted L.

Note that L is not connected: Define f : L → R by f(Λ) = Λ0
0. Then f is continuous

so both f−1((−∞, 0)) and f−1((0,∞)) are open and since Λ0
0 6= 0 we have that L =

f−1((−∞, 0))∪ f−1((0,∞)). Both of these are non-empty as I4,−I4 ∈ L are elements of
the first resp. the second set.

Note that by definition the Lorentz group leaves timelike events as timelike and
similarly for space- and lightlike.

We will restrict ourselves to the Lorentz transformations preserving the direction
of time. Working with the possibility of reversing time is not a major complication,
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2 INTRODUCTORY DEFINITIONS AND RESULTS

but we will nonetheless refrain from considering such transformations. It is beyond the
scope of this project to also consider time reversal. We will thus restrict ourselves to
the groups L↑, the orthochronous Lorentz group, and L↑

+, the restricted Lorentz group
[6, p. 2]. The group of Lorentz transformations preserving that equivalence classes of
future and past (i.e. it is not time-reversing) resp. also of determinant 1.

L↑ = {Λ ∈ L|Λ0
0 ≥ 1}, L↑

+ = {Λ ∈ L|detΛ = 1,Λ0
0 ≥ 1}.

Most of what we do is about L↑
+ and the extension to L↑ is easy. An extension to L is

similarly not so complicated, see [8, p. 75].

Proposition 2.7. L↑
+ is the (path-)connected component of the identity in L.

In order to prove this we first give a full classification of the Lorentz group.
Note first that we may identify SO(3) as a subgroup of L↑

+ by the injective group
homomorphism

ΛR : SO(3) ↪→ L

R 7→ [
1 0

0 R

]
Describing the rotation that is R by a rotation vector �ϕ of length ≤ π and direc-
tion the axis of rotation, we get Lorentz transformations Λϕ(�ϕ). The reason for this
parametrization is that we get the equation Λϕ(�ϕ+ �ϕ ′) = Λϕ(�ϕ)Λϕ(�ϕ ′) if �ϕ‖�ϕ ′ are
parallel.

Recall that for a particle with velocity �v we define the γ-factor γ(v) = 1√
1−v2

.

Definition 2.8. The Lorentz boost with velocity �v is

Λv(�v) =

[
γ(v) γ(v)�vT

γ(v)�v I3 +
γ(v)−1

v2
�v�vT

]
.

One can check that Λv(�v) ∈ L↑
+. Parameterizing the velocities with the hyperbolic

coordinates �ω = arctanh(v)v̂ we get Lorentz transformations Λω( �ω), γ(v) = coshω.
Again, the reason for this parametrization is that we have linearity, Λω( �ω + �ω ′) =

Λω( �ω)Λv( �ω ′) for parallel �ω‖ �ω ′.

Proposition 2.9. For any Λ ∈ L↑
+ there exists unique �v ∈ R3, R ∈ SO(3) such that

Λ = Λv(�v)ΛR(R). The assignment Λ 7→ (�v, R) is continuous.

Proof. We prove this result in the appendix, see section A.2.

This proves that L↑
+ is in fact path-connected. Given Λ ∈ L↑

+ write Λ = Λϕ(�ϕ)Λω( �ω).
Then the path t 7→ Λϕ(t�ϕ)Λω(t �ω) connects I4 and Λ in L↑

+.
Any other Lorentz transformation has either Λ0

0 ≤ −1 or detΛ = −1. In both
cases they are in a different component than I4.

However, L↑
+ is not simply connected since we have the following

Proposition 2.10. SO(3) is not simply connected.

Proof. We have been unable to find an elementary proof of this result in the literature.
Hence we provide our own elementary proof of this result in section 2.6.

The intuition one should have about this is that since rotations by π and −π are the
same, a curve in SO(3) may use this identification to make a “jump”. Such jumps can’t
be removed continuously. The proof is long and technical, which is why we postpone
it to the end of the section. It is not needed to understand the rest of this project.

Using this we get the following

Proposition 2.11. L↑
+ is not simply connected.

Proof. Suppose for contradiction that L↑
+ is simply connected. Define by Prop. 2.10 a

closed path γ(t) ∈ SO(3) ≤ L↑
+ s.t. γ is not contractible in SO(3). By assumption γ(t)

is contractible in L↑
+. Let Λ(s, t) be a homopoty contracting γ to a point. (Λ(0, t) =

γ(t)). Now by Prop. 2.9 we may write Λ(s, t) = Λv(�v(s, t))ΛR(R(s, t)) with R(s, t)

and �v(s, t) continuous. Hence R(s, t) is a homotopy in SO(3) contracting γ to a point.
Contradiction. We conclude that L↑

+ is not simple connected.
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2.2 The Poincaré Group

Definition 2.12. The discrete Lorentz transformations

P =

[
1 0

0 −I3

]
, T =

[
−1 0

0 I3

]
, PT = TP = −I4, I4

together form a group called the discrete Lorentz group. P and T are called resp. space
inversion and time reversal.

With these we get that L↑ = {Λ, PΛ|Λ ∈ L↑
+} and L = {Λ, TΛ|Λ ∈ L↑}. Hence with little

work we may extend results for L↑
+ to L↑ and (if we wanted to) L.

2.2 The Poincaré Group
We are now ready to define the group of interest.

Definition 2.13. A Poincaré transformation Π = (a,Λ) with a ∈ R4, Λ ∈ L is a map
Π : R4 → R4 defined by Π(x) = Λx + a.

The set P = {Π = (a,Λ)|a ∈ R4, Λ ∈ L} is a group with composition

(a,Λ) ◦ (a ′, Λ ′) = (a +Λa ′, ΛΛ ′).

That is P = R4 o L is the semi-direct product. The group P is called the Poincaré
group. (This composition comes from the composition of the maps Π,Π ′ : R4 → R4.)
Note that inversion is given by

(a,Λ)−1 = (−Λ−1a,Λ−1).

Similarly as for L↑
+ we define the orthochronous resp. restricted Poincaré group

P↑ = R4 o L↑, P↑
+ = R4 o L↑

+.

As before P↑
+ is the connected component of the identity (0, I4) in P.

2.3 Quantum Mechanics and Projective Spaces
We define the relevant projective space of Quantum Mechanics. This section is based
on [8, p. 50-51]

In Quantum Mechanics one of the postulates is that the state of a physical system
is an element of norm 1 in some Hilbert space (H, 〈−,−〉), see [2, p. 1].

Now the states ψ,φ ∈ H give rise to the same probabilities of observables if they are
scalar multiples of each other, φ = λψ for some λ ∈ C, |λ| = 1. Since we are not working
with constructing superpositions of states we will identify such states and work with
the equivalence classes of this identification instead. We are thus lead to the following.

Definition 2.14. Define the equivalence relation ∼ on H by ψ ∼ φ if φ = λψ for some
λ ∈ C\{0}. The quotient space (H\{0})/∼ is called the projective space and is denoted
by Ĥ.

We equip H with its norm topology and Ĥ with the quotient topology. Note that we
do not require |λ| = 1 in the identification. This can be seen as just normalizing all the
elements prior to the identification above with |λ| = 1.

Definition 2.15. On Ĥ we define the bilinear map 〈−,−〉 : Ĥ× Ĥ→ R by

〈
φ̂, ψ̂

〉
=

| 〈φ,ψ〉H |2

‖φ‖2H ‖ψ‖2H
.

It is the transition probability of passing from state φ to state ψ.

Note that the map defined above is well-defined, since we scale by the norm of the
representatives φ,ψ.

We are only interested in transformations preserving these transition probabilities.
The transformations should preserve the laws of (quantum) physics and hence in par-
ticular the transition probabilities.
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2 INTRODUCTORY DEFINITIONS AND RESULTS

Definition 2.16. A bijection T : Ĥ → Ĥ is called a symmetry transformation or an
automorphism if it preserves all transition probabilities i.e.〈

Tφ̂, Tψ̂
〉
=

〈
φ̂, ψ̂

〉
for all φ̂, ψ̂ ∈ Ĥ.

Through ordinary function composition all such transformations form a group
Aut(Ĥ) called the automorphism group.

Suppose that A : H → H is (anti)unitary. Then we define Â : Ĥ → Ĥ by Âψ̂ = Âψ.
Note that the map Â is well-defined: If A is unitary we have Âλψ = λ̂Aψ = Âψ and
similarly if A is antiunitary.

Moreover we have that〈
Âφ̂, Âψ̂

〉
=

| 〈Aφ,Aψ〉H |2

‖Aφ‖2H ‖Aψ‖2H
=

| 〈φ,ψ〉H |2

‖φ‖2H ‖ψ‖2H
=

〈
φ̂, ψ̂

〉
.

So Â is a symmetry transformation.

Definition 2.17. We define the groups

~U(H) = {A ∈ GL(H)|Aunitary or antiunitary}

U(H) = {A ∈ GL(H)|Aunitary} ≤ ~U(H).

We equip these groups with the strong operator topology, i.e. the weakest topology
making all evaluations

ex : ~U(H) 3 A 7→ Ax ∈ H, x ∈ H

continuous.

Note that U(H) ≤ ~U(H) is a subgroup of index 2, since a product of any two antiunitary
operators is unitary.

With this we will by p : ~U(H)→ Aut(Ĥ) denote the above map, A 7→ Â. With this
notation we have the following

Theorem 2.18 (Wigner, [8, Thm 2.7]). The map p defined above is surjective and
has kernel kerp = {eiθ idH | 0 ≤ θ < 2π}.

2.4 Representation Theory

We want to combine the relativistic invariance of P↑
+ and P↑ with the quantum me-

chanical invariance of Aut(Ĥ). This should correspond to P↑
+ and P↑ acting on Ĥ,

specifically a map ρ : P↑
+ → Aut(Ĥ) with certain properties. These will be described

below. This section is based on [8, p. 51-54].

Definition 2.19. Let U(Ĥ) = p(U(H)) and equip it with the quotient topology from
the surjection p i.e. the topology making all evaluations continuous.

Definition 2.20. Let G be a topological group and H a Hilbert space.

• A projective representation ρ of G in H is a continuous group homomorphism
ρ : G → Aut(Ĥ), in particular an action of G on Ĥ.
If moreover ρ(G) ⊂ U(Ĥ) we say that ρ is a projective unitary representation

• A representation π of G in H is a continuous group homomorphism π : G → GL(H),
i.e. an action of G on H.
If moreover π(G) ⊂ U(H) we say that π is a unitary representation.

Definition 2.21. Two representations π, π ′ of G in the Hilbert spaces H,H ′ are said
to be equivalent if there exists some unitary map U : H→ H ′ s.t. π ′(g) = Uπ(g)U∗ for
all g ∈ G.

Given a (unitary) representation π we may construct a projective (unitary) represen-
tation ρ = p ◦ π. Conversely

8



2.4 Representation Theory

Definition 2.22. Let ρ be a projective (unitary) representation. We say that ρ admits
a lifting π if ρ = p ◦ π for some (unitary) representation π.

This is not a weak property. The following example shows, that this does not hold for
all projective representations.

Example 2.23 ([8, p. 53]). Consider the group Z/2Z × Z/2Z ∼= {I4, P, T, PT }, the
Discrete Lorentz Group, and the projective representation in C2 defined by

ρ(P) =

[̂
0 1

1 0

]
, ρ(T) =

̂[0 −i

i 0

]
, ρ(PT) =

̂[
1 0

0 −1

]
Then this representation does not admit a lifting.

Proof. Write

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
These are the Pauli matrices. It is straightforward to verify the equalities

σjσk = δjk + i
∑
m

εjkmσm

where εjkm is the Levi-Civita symbol. Suppose that ρ = p ◦ π for some representation
π. Then by Wigner’s Thm. (Thm. 2.18) we have that

π(P) = λ1σ1, π(T) = λ2σ2, π(PT) = λ3σ3.

for some λ1, λ2, λ3 all with norm 1.
Then since PT = TP we have that

iλ1λ2σ3 = π(P)π(T) = π(T)π(P) = −iλ1λ2σ3.

But σ3 6= 0. Contradiction. Hence ρ does not admit a lifting.

Since SO(3) contains a copy of Z/2Z× Z/2Z, namely the rotations around the coordi-
nates axes with angle π, this proves that if we may extend a projective representation
of this subgroup to the whole of SO(3), then SO(3) also has a projective representation,
which does not admit a lifting.

Definition 2.24. Let ρ be a projective representation. We say that a nonzero subspace
{0} 6= V = spanC{ψi | i ∈ I} ⊂ H is invariant for ρ if, for all g ∈ G, we have that
spanC{φi|i ∈ I} ⊂ spanC{ψi|i ∈ I}, where φ̂i = ρ(g)(ψ̂i). (Note that this does not
depend on the choice of representatives φi.).

Definition 2.25. We say that the representation π is

• reducible if there exist some non-zero proper subspace {0} 6= V ( H such that
π(g)(V) ⊂ V for all g ∈ G.

• irreducible if it is not reducible.

We say that the projective representation ρ is

• reducible if there exists a proper invariant subspace for ρ.

• irreducible if it is not reducible.

One might wonder how the irreducibility plays with liftings. We have the following

Proposition 2.26. Suppose that ρ = p ◦ π where ρ is a projective representation and
π is a representation. Then ρ is irreducible if and only if π is.

Proof. Let {0} 6= V = spanC{ψi} be an invariant subspace for ρ. Then for any g ∈ G we
may pick the representatives φi = π(g)ψi since we have

π̂(g)ψi = (p(π(g)))ψ̂i = ρ(g)(ψ̂i).

Now irreducibility of π and ρ are both equivalent to the implication

spanC{φi} ⊂ V ⇒ V = H.
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2 INTRODUCTORY DEFINITIONS AND RESULTS

We are interested in the irreducible projective unitary representations of L↑ and L↑
+

in H. The projective part is exactly that we get symmetry transformations, which
we wanted for the transformations to preserve quantum physics. In physics it is the
unitary operators, which are of most importance, which is why we restrict ourselves to
unitary operators.

In some sense a pair (ρ,H) of an irreducible unitary projective representation and
the corresponding Hilbert space is an elementary particle [6, p. 19]. This is why we
will only consider the irreducible representations. The space H can be seen as the
state-space of the corresponding elementary particle.

The difference between working with L↑
+ and L↑ is minimal, and one might as well

consider time inversions and work with L.
From general representation theory we have the following

Theorem 2.27 (Schur’s Lemma, [8, Lem. 2.12]). If π is a unitary representation
then the following are equivalent

• π is irreducible

• If T : H → H is bounded linear satisfies Tπ(g) = π(g)T for all g ∈ G then there
exists λ ∈ C s.t. T = λ idH.

2.5 Lie Groups and Algebras

The final introductory definitions we need are that of Lie groups and algebras, which
will prove useful when discussing the possibility of lifting projective (unitary) repre-
sentations. This section is based on [4].

In order to give the definition of a Lie group in full generality, one needs to know
about smooth manifolds from differential geometry. To also give a full introduction to
this subject is beyond the scope of this project. We will only state some of the main
results for matrix groups (i.e. G ≤ GLn(K) for K = R of K = C).

Definition 2.28. A Lie group is a group G equipped with the structure of a smooth
manifold s.t. multiplication and inversion are both smooth maps.

For our purposes it is enough that matrix groups, R4 and semidirect products of such
are Lie groups. Since the Lorentz group is a matrix group, we see that it is a Lie group.

For matrices we have the exponential map

exp : A 7→ exp(A) =

∞∑
k=0

Ak

k!
.

This sum is readily checked to be absolutely convergent. Moreover, if AB = BA, it is
a straightforward computation to show that exp(A+ B) = exp(A) exp(B). In addition,
the function

t 7→ exp(tA) =

∞∑
k=0

(tA)k

k!

is seen to be differentiable with derivative exp(tA)A as the above sum is uniformly
convergent (in t) on any compact set.

We define the operator norm by ‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1} and the topology on
matrix groups by this norm.

Definition 2.29. A one-parameter subgroup of a matrix Lie group G is a continuous
group homomorphism α : (R,+)→ G.

It is clear that t 7→ exp(tA) for some fixed matrix A is a one-parameter subgroup. In
fact we have the contrary as well

Proposition 2.30 ([4, Thm. 8]). Suppose α is a one-parameter subgroup of a matrix
Lie group G. Then there exists a unique matrix A such that α(t) = exp(tA) for all t.

Definition 2.31. Let α(t) = exp(tA) be a one-parameter subgroup. Then A =
d
dtα(t)

∣∣
t=0

is said to be the infinitesimal generator of α.

10



2.6 SO(3) is not simply connected

Definition 2.32. A Lie algebra is a vector space g over a field (which in our case
always will be R) equipped a bilinear map [−,−] called the Lie bracket satisfying

[A,B] = −[B,A]

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0 (Jacobian identity).

Definition 2.33. A Lie algebra homomorphism between to Lie algebras g and g ′ is a
linear map ϕ : g→ g ′ s.t. ϕ([A,B]) = [ϕ(A), ϕ(B)] for all A,B ∈ g.

The main result is that to a Lie group we may assign a Lie algebra. This we will only
state.

Theorem 2.34. Let G ≤ GLn(K) be a matrix group. Here K = R or K = C. Then

LG = {A ∈Mn×n(K) | exp(tA) ∈ G for all t ∈ R}

with [A,B] := AB − BA is a Lie algebra called the Lie algebra of G.

Theorem 2.35 (Baker-Campbell-Hausdorff [4, p. 4]). For ‖A‖ , ‖B‖ sufficiently small
there exists a solution A∗B to the equation exp(X) = exp(A) exp(B). A∗B is unique
if we assume that ‖X‖ is small. We have the following formula

A ∗ B = A + B +
1

2
[A,B] + . . .

where the higher order terms are obtained by iterative applications of the Lie bracket.

Theorem 2.36. Suppose that G is a matrix Lie group and q1, . . . , qs are one-
parameter subgroups with infinitesimal generators A1, . . . ,As such that any g ∈ G
can be written g = q1(t1) · · ·qs(ts) for some t1, . . . , ts ∈ R. Suppose moreover that
for all j, k we have that [Aj,Ak] ∈ spanR{A1, . . . ,As}.

Then LG = spanR{A1, . . . ,As}.

Proof. We give a sketch in the case s = 2.
Let B ∈ LG then exp(tB) ∈ G for all t ∈ R so by assumption we may write that

exp(tB) = exp(t1A1) exp(t2A2) for some t1, t2 ∈ R (for each t). Let now t be suffi-
ciently small. By Baker-Campbell-Hausdorff then B = 1

t
(t1A1)∗(t2A2) ∈ span{A1,A2}.

(There might be some convergence issues here if the coefficients of [A1,A2] written as
a linear combination are large. They are all ±1 in the cases we will consider.) Since
s = 2 is finite the closure is superfluous and we get the desired.

2.6 SO(3) is not simply connected
We give our own elementary proof of Prop. 2.10.

The intuition one should have is that a curve may “jump”, i.e. use that rotation by
an angle of π is the same as rotation by an angle of −π. The intuition again is that
such jumps can’t be removed continuously. Hence that a closed curve with a jump
can’t be contracted to a point.

The difficulty in proving this result is to find a precise way of defining what a
jump is, in such a way, that we may use only the continuity to prove that jumps can’t
disappear. This is the reason for the proof to be so long and technical.

The idea for this first part was given to me by my advisor Jan Philip Solovej.

The homeomorphism SO(3) ∼= BR3(0, 1)/ ∼

Here the relation ∼ is given by x ∼ −x if ‖x‖ = 1. This extends to an equivalence
relation by declaring y ∼ y for all y ∈ BR3(0, 1).

We first describe the map SO(3)→ BR3(0, 1)/ ∼.
Let R ∈ SO(3). Consider the characteristic polynomial p(λ) = det(R − λI3). p is of

degree 3 so it has at least 1 root over R, λ1. Over C we have the roots λ1, λ2, λ3. Now,
p is defined over R so either λ2, λ3 ∈ R or λ3 = λ2 is the complex conjugate.

Since R is an isometry we have that |λ1| = 1 i.e. λ1 = ±1. And the same proves
that if λ2, λ3 are real, then λ2, λ3 = ±1.

11



2 INTRODUCTORY DEFINITIONS AND RESULTS

Since Rt = R−1 we see that R is normal and hence diagonizable over C. This proves
that 1 = detR = λ1λ2λ3. In the case λ2, λ3 ∈ R we conclude that at least 1 eigenvalue
is 1, since they can’t all be −1. If λ2, λ3 /∈ R we have λ2λ3 = |λ2|

2 > 0 so λ1 = 1
|λ2|2

> 0.
We conclude that λ1 = 1 and so we have an eigenvalue of 1 in this case also.

Define n̂ as the corresponding eigenvector. Note that R 7→ n̂ ∈ S2 is continuous as
it involves solving a linear system of equations (R − I3)n̂ = 0.

writing R in an orthonormal basis with n̂ as the first vector (note that this is a
continuous transformation of R) we see that

R =

(
1 0

0 R2

)
where R2 ∈ SO(2). Note that R 7→ (n̂, R2) is a bijection (with some rule for choosing
n̂ and the order of the basis) onto S2 × SO(2). Now R2(1, 0) has norm 1 so there
exists some ϕ s.t. R2(1, 0) = (cosϕ, sinϕ). Again R2 7→ ϕ ∈ [−π, π]/(−π ∼ π) = S1 is
continuous. Write R2(0, 1) = (− sin θ, cos θ) for some θ ∈ [−π, π]/(−π ∼ π) = S1. Then

1 = detR2 = cosϕ cos θ + sinϕ sin θ = cos(ϕ − θ).

Since |ϕ − θ| < 2π we conclude that θ = ϕ. Hence R2 7→ ϕ is a bijection and R is a
rotation around n̂ by an angle of ϕ. The map R 7→ ϕ

π
n̂ is thus a continuous bijection

SO(3)→ BR3(0, 1)/ ∼.
The inverse map is seen to be [8, p. 45]

�ϕ = ϕn̂ 7→ R, Rjk = δjk cosϕ + njnk(1 − cosϕ) −

3∑
m=1

εjkmnm sinϕ.

We will now work in this set instead.

Technical constructions

Claim 1. The space BR3(0, 1)/ ∼ is a metric space.

Proof of claim. For a general metric space (M,dM) we may define a pseudometric on
the quotient space M/ ∼ by

d([x], [y]) = inf{dM(p1, q1) + . . . + dM(pn, qn)}.

where the infimum is taken over all finite paths from [x] to [y], such paths are given
by n ∈ N, [p1] = [x], [qn] = [y], [pi+1] = [qi], i = 1, 2, . . . , n − 1. It is straightforward to
prove that this defines a pseudometric.

For our case it is easy to show that this defines a metric and reduces to

d(x, y) = min
{
inf{dR3(x, v) + dR3(−v, y) : v ∈ ∂BR3(0, 1)}, dR3(x, y)

}
. ◦

Note that for dR3(x, y) sufficiently small (say < 1/2) this metric agrees with the R3-
metric, dR3(x, y) = d(x, y).

We will view BR3(0, 1) = B(0, 1) ⊂ BR3(0, 1)/ ∼ as a subset.
Suppose we have a homotopy γ such that γ(0, t) = 0 = γ(1, t), γ(s, 0) = �γ(s), and

γ(s, 1) = 0, where �γ is some curve, to be specified later.
Since γ is now a continuous function from a compact metric space ([0, 1] × [0, 1])

into another metric space we get that it is uniformly continuous.
Let ε < 1

17
. By uniform continuity find δ > 0 such that

d(γ(s, t), γ(s ′, t ′)) < ε for ‖(s, t) − (s ′, t ′)‖ < δ.

Define a finite sequence

0 = s0 < s1 < . . . < sN−1 < sN = 1

such that sk+1 − sk < δ for all k. Define for all t the sets

Bt
k = B(γ(sk, t), ε) ∩ BR3(0, 1).

12



2.6 SO(3) is not simply connected

Figure 2: The two different cases of Bt
k. These sets have either 1 or 2 components. The

points on the curve s 7→ γ(s, t) are labeled by their s-coordinate. For k, t such that γ(sk, t)
is close to the boundary, the balls B(γ(sk, t), ε) overlaps with the boundary ∂B(0, 1) and
hence when removing this part, we get two disjoint components.

That is Bt
k is the part of the ε-balls located in the open unit ball Bt

k ⊂ B(0, 1).
For each t we will split up Bt

k as a union of its connected components. Suppose first
that Bt

k is connected. Then we set (Bt
k)

′ = Bt
k and (Bt

k)
′′ = ∅. If Bt

k is not connected
it has 2 components, call these (Bt

k)
′ and (Bt

k)
′′, see figure 2 We want to label (Bt

k)
′

and (Bt
k)

′′ as Bt
k,1 and Bt

k,2 according to where the curve s 7→ γ(s, t) lives. For the first,
define

Bt
0,1 = B(0, ε) = Bt

0 and Bt
0,2 = ∅.

Define Bt
k,1 and Bt

k,2 inductively as follows, see figure 3.

1. If (Bt
k+1)

′ ∩ Bt
k,1 6= ∅, then Bt

k+1,1 = (Bt
k+1)

′ and Bt
k+1,2 = (Bt

k+1)
′′.

2. If (Bt
k+1)

′′ ∩ Bt
k,1 6= ∅, then Bt

k+1,1 = (Bt
k+1)

′′ and Bt
k+1,2 = (Bt

k+1)
′.

3. If (Bt
k+1)

′ ∩ Bt
k,2 6= ∅, then Bt

k+1,1 = (Bt
k+1)

′′ and Bt
k+1,2 = (Bt

k+1)
′.

4. If (Bt
k+1)

′′ ∩ Bt
k,2 6= ∅, then Bt

k+1,1 = (Bt
k+1)

′ and Bt
k+1,2 = (Bt

k+1)
′′.

Note that we may be in cases 1 and 4 or cases 2 and 3 at the same time. This is not
a problem as they agree on the definition of Bt

k+1,1 and Bt
k+1,2.

To prove that we may not be in both cases 1 and 3 (or similar) consider the R3

distance between the sets. By picking some antinodal points on the boundary and
using the reverse triangle inequality it follows that dR3(Bt

k,1, B
t
k,2) ≥ 2 − 4ε > 1. Also

diamR3((Bt
k+1)

′) ≤ 2ε < 1. Hence both intersections (Bt
k+1)

′ ∩ Bt
k,1 and (Bt

k+1)
′ ∩ Bt

k,2

can’t be non-empty.
This defines for all t the sets

Bt
0,1, B

t
0,2, B

t
1,1, . . . , B

t
N,1, B

t
N,2.

Claim 2. Let i ∈ {1, 2}. If γ(s0, t0) ∈ Bt
k,i then γ(s0, t0 + ρ) ∈ Bt0+ρ

k,i for all |ρ| < ρ0
for some ρ0 > 0.
The intuition here is that the “1-sets” are close (in R3) and that the “2-sets” are close
(in R3), but “1-sets” and “2-sets” are not (in R3), see figure 4.

Proof of claim. We use induction on k. We may wlog assume that i = 1. The result
is clear for k = 0 so assume it hold for k.

Note first that if dR3(Bt
k,1, B

t ′
k ′,1) ≤ d then dR3(Bt

k,1, B
t ′
k ′,1) ≤ d + 4ε. (This of

course hold if we interchange 1 and 2 as well.) To see this use that d = dR3 if the

13



2 INTRODUCTORY DEFINITIONS AND RESULTS

Figure 3: Construction of Bt
k,i. Here sk and sk+1 label the points γ(sk, t) and γ(sk+1, t)

respectively. Note that we are in both cases 1 and 4 in this picture. The two points labeled
sk are in fact the same point, as they are identified by the equivalence relation.

distance is small in R3 and find other points in the balls Bt
k, B

t ′

k ′ in the 2-component.
An application of triangle inequality gives the desired.

Note also that dR3(Bt
k,1, B

t
k+1,1) ≤ 4ε as we may just use the triangle inequality

with inserting the centers of the circles.
If γ(s, t) ∈ Bt

k,1 for some s, then we may use the induction hypothesis to conclude
that γ(s, t + ρ) ∈ Bt+ρ

k,1 for all |ρ| < ρ0. Since moreover γ is continuous and d and the
R3-metric agrees close to γ(s, t) ∈ B(0, 1), the interior, we see that γ is continuous at
the point (s, t) w.r.t. the R3 metric. Hence we conclude that dR3(γ(s, t), γ(s, t+ρ)) ≤ ε

for all |ρ| < ρ0 for some possibly smaller ρ0. In this case then

dR3(B
t
k,1, B

t+ρ
k,1 ) ≤ ε.

If instead γ(s, t) ∈ Bt
k,2 for some s we may similarly conclude that

dR3(B
t
k,2, B

t+ρ
k,2 ) ≤ ε.

Using the above comment we get that dR3(Bt
k,1, B

t+ρ
k,1 ) ≤ 5ε.

The last case is that γ(s, t) ∈ ∂B(0, 1) for all s “close to” sk. Then in fact the sets
Bt
k,1 overlap and thus

dR3(B
t
k,1, B

t+ρ
k,1 ) = 0.

Consider now x ∈ Bt
k+1,1 and y ∈ Bt+ρ

k+1,1. Let x0 ∈ Bt
k,1, y0 ∈ Bt+ρ

k,1 . Then by combining
the above we have the bound

dR3(x, y) ≤ dR3(x, x0) + dR3(x0, y0) + dR3(y0, y) ≤ 4ε + 5ε + 4ε = 13ε

We have some problems if some of these sets are empty. In this case we may apply
the above bound on the “2-sets” and thus by the begining comments bound the R3

distance by
dR3(x, y) ≤ 13ε + 4ε = 17ε.

In total we have the bound (if Bt
k+1,1 6= ∅)

dR3(B
t
k+1,1, B

t+ρ
k+1,1) ≤ 17ε.

Suppose now γ(s0, t0) ∈ Bt
k+1,1. Again using that γ is continuous we may conclude

that γ(s0, t0 + ρ) ∈ B(0, 1) for all |ρ| < ρ0. (For a possibly smaller ρ0.) We con-
clude that γ(s0, t0 + ρ) ∈ Bt+ρ

k,j for some j ∈ {1, 2}. The above calculations show that
dR3(Bt

k,1, B
t+ρ
k,1 ) ≤ 17ε and thus that

dR3(B
t
k+1,1, B

t+ρ
k+1,2) ≥ 2 − 17 > 1

14



2.6 SO(3) is not simply connected

Figure 4: Picture of the t+ρ sets being close. We have a lot of overlap of the “1-sets”, where
this particular curve, s 7→ γ(s, t), lives. Note that even though Bt

k+1,1 and Bt+ρ
k+1,1 overlap,

we do not have that Bt
k+1,2 and Bt+ρ

k+1,2 overlap. In fact Bt
k+1,2 = ∅.

We conclude that j 6= 2 and thus that γ(s0, t0 + ρ) ∈ Bt0+ρ
k+1,1 for all |ρ| < ρ0.

This concludes the induction step and thus we have proved the claim. ◦

Define now κ(s) = sup{k : sk ≤ s} and for t ∈ B

stfinal = sup{s : ‖γ(s, t)‖ = 1}, σt =
stfinal + sκ(stfinal)+1

2

As the last time the curve s 7→ γ(s, t) hits the boundary and some appropriately small
time after that. Then

sκ(stfinal)
≤ stfinal < σ

t < sκ(stfinal)+1

Hence κ(stfinal) = κ(σ
t) and so γ(σt, t) ∈ Bt

κ(σt), see figure 5. We say that γ jumps at time t
if γ(σt, t) ∈ Bt

κ(σt),2. (And thus that γ does not jump if γ(σt, t) ∈ Bt
κ(σt),1.)

Define the sets

I = {t : ‖γ(s, t)‖ < 1 for all 0 ≤ s ≤ 1},

B = {t : ‖γ(s, t)‖ = 1 for some 0 ≤ s ≤ 1},

J = {t ∈ B : γ jumps at time t}.

Note that since at t = 1 the curve is constant we have that 1 ∈ I.

“Jumps can’t disappear”

Claim 3. I is open
The idea for the proof of this claim was given to me by my advisor Jan Philip Solovej.

Proof of claim. We prove that f : t 7→ sups∈[0,1]{‖γ(s, t)‖} is continuous.
Let t ∈ [0, 1] and let tj → t be a sequence converging to t. By compactness the

supremum is attained so f(tj) =
∥∥γ(sj, tj)∥∥ for some sj. By compactness we may

assume (by passing to a subsequence) that sj → s for some s ∈ [0, 1]. Now the limit is
limj→∞ f(tj) = ‖γ(s, t)‖ ≤ f(t). Suppose for contradiction that f(t) > ‖γ(s, t)‖. Then
again f(t) = ‖γ(s0, t)‖ for some s0. Then

lim
j→∞

∥∥∥γ(sj, tj)∥∥∥ = ‖γ(s, t)‖ < ‖γ(s0, t)‖ = lim
j→∞

∥∥∥γ(s0, tj)∥∥∥ .
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Figure 5: Picture of the curve “leaving the boundary”. The different points
γ(sκ(st

final)
, t), γ(stfinal, t), γ(σ

t, t), γ(sκ(st
final)+1, t) are labeled by their s-coordinate. i ∈

{1, 2}. Note that only the points γ(σt, t) and γ(sκ(st
final)+1, t) lie in the interior B(0, 1).

The remaining points lie on the boundary ∂B(0, 1). In general γ(sκ(st
final)+1, t) need not lie

on the boundary.

Hence for j > j0 for some j0 we have that
∥∥γ(sj, tj)∥∥ < ∥∥γ(s0, tj)∥∥. But sj was by

construction a maximizer. Contradiction. We conclude that limj→∞ f(tj) = f(t) and
thus that f is continuous. Now I is the preimage of the open set [0, 1) under f hence
open. (Note that we work in the standard topology on [0, 1].) ◦

Claim 4. I ∩ J = ∅

Proof of claim. Suppose for contradiction that t ∈ I ∩ J 6= ∅.
Let (ti) ⊂ I be a sequence converging to t.
Since

∥∥γ(s, ti)∥∥ < 1 for all s we have that γ(s, ti) ∈ Bti

κ(s),1 for all s. In particular

γ(σt, ti) ∈ Bti

κ(σt),1. On the other hand we have that γ(σt, t) ∈ Bt
κ(σt),2 by assumption

of t ∈ J .
By continuity we conclude that there exists some i0 s.t. γ(σt, ti) ∈ Bt

κ(σt),2 for

all i ≥ i0. Since also γ(σt, ti) ∈ Bti

κ(σt),1 we conclude that Bti

κ(σt),1 ∩ Bt
κ(σt),2 6= ∅ for

all i ≥ i0. But in general we have that Bt1
k,1 ∩ Bt2

k,2 = ∅ for |t2 − t1| small enough.
Contradiction. We conclude that I ∩ J = ∅. ◦

Claim 5. J is open.

Proof of claim. Let t ∈ J. We prove that for some ρ0 > 0, t + ρ ∈ J for all |ρ| < ρ0.
Now, t /∈ I so t ∈ B\∂B so t + ρ ∈ B for all |ρ| < ρ0 for some ρ0 > 0.
By assumption γ(σt, t) ∈ Bt

κ(σt),2.
By claim 2 we have that γ(σt, t + ρ) ∈ Bt+ρ

κ(σt),2
for all |ρ| < ρ0 for some possibly

smaller ρ0 > 0.
Now, σt+ρ−σt may not be small. Hence we may not just do a continuity argument

here. We may deal with the ρ for which σt+ρ > σt in the following way.
Restricting s to the set [σt, 1] we see that at time t the curve does not touch the

boundary in this interval. Now the set

I[σt,1] = {t ′ ∈ [0, 1] :
∥∥γ(s, t ′)∥∥ < 1 for all σt ≤ s ≤ 1}

may be shown to be open analogously to I. Note that t ∈ I[σt,1]. Hence for some
possibly smaller ρ0 > 0 we have that t + ρ ∈ I[σt,1] for all |ρ| < ρ0. So the case
σt+ρ > σt does not happen.
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Assume now σt+ρ ≤ σt. Since ‖γ(s, t + ρ)‖ < 1 for s ∈ [σt+ρ, σt] we have that
the curve can’t jump between “1-sets” and “2-sets” in this interval. We know that
γ(σt, t + ρ) ∈ Bt

κ(σt),2 we see that γ(σt+ρ, t + ρ) ∈ Bt
κ(σt+ρ),2. We conclude that the

curve jumps at time t + ρ and thus that J is open. ◦

Claim 6. J is closed

Proof of claim. Note that ∂J ⊂ B as B is closed. Moreover, since J is open we have
that ∂J ⊂ B\J.

We may describe B\J as the set of t for which γ does not jump. But a better way
is to see it as t ∈ B for which

γ(σt, t) ∈ Bt
κ(σt),1

This is (almost) the same as that of J, only with index 1 instead of 2. Hence we may
do the same argument as in claim 5. The problem is that we may not conclude that
t + ρ ∈ B for all |ρ| < ρ0, since we may have t ∈ ∂B = ∂I. But we may still conclude
that, if t + ρ ∈ B for some |ρ| < ρ0, then γ does not jump at time t + ρ. We may fix
this problem of not being an element of B for certain t by restricting to a subsequence.

Suppose now for contradiction ∂J 6= ∅ and let t ∈ ∂J ⊂ B\J. Find a sequence
(tj) ⊂ J ⊂ B s.t. tj → t. Then |tj − t| < ρ0 for all j ≥ j0 for some j0 ∈ N. Then
tj0 = t+ ρ for some |ρ| < ρ0 and tj0 ∈ J ⊂ B so we may conclude as above that γ does
not jump at time tj0 , i.e. that tj0 /∈ J. But by construction tj0 ∈ J. Contradiction. We
conclude that ∂J = ∅ and thus J = J ∪ ∂J = J is closed. ◦

In total: J is both open and closed.
Define the curve

�γ(s) =

{
(2s, 0, 0) if 0 ≤ s ≤ 1

2

(2s − 2, 0, 0) if 1
2
≤ s ≤ 1

We see that this curve jumps, hence γ has a jump at t = 0, i.e. 0 ∈ J. We conclude
that J = [0, 1] by connectedness. On the other hand 1 ∈ I so 1 /∈ J. Contradiction.
Hence �γ is not a contractible curve.

We conclude that SO(3) is not simply connected.

3 Lifting Projective Representations

In this section we construct a bijection between the projective representations of the
Poincaré group and the representations of its covering group. This will help us classify
the projective representations of the Poincaré group. We first prove the existence of
such a bijection in the general setting under some conditions, which we subsequently
prove hold for the Poincaré group. This section is based on [8, p. 49, 63-66].

3.1 The Covering Group
We find general conditions on a Lie group such that we may construct a bijection
between projective unitary representations of the group and unitary representation of
the covering group.

Definition 3.1. Let G be a Lie group.
A Lie group ~G is said to be the covering group of G if ~G is simply connected and

there exists a surjective open continuous group homomorphism ~p : ~G → G.
We may then write (with H = ker ~p) G ∼= ~G/ ker ~p = ~G/H.

Note that that the usual definition requires the following additional condition as well,
see [5, p. 332, 450].

For all g ∈ G there exists some open set U ⊂ G, with g ∈ U and p−1(U) =
⋃

α Vα is
a disjoint union of open sets Vα ⊂ ~G such that ~p|Vα : Vα → U is a homeomorphism.

This additional property is clear for the covering groups, which we consider, and
for all the proofs we need only the properties stated in our definition. We will thus
ignore this additional condition.
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3 LIFTING PROJECTIVE REPRESENTATIONS

Example 3.2. A well-known example of a covering group, is that S̃O(3) = SU(2).
This follows from Prop. 3.10.

Theorem 3.3. Let G be a connected Lie group and ~G be a covering group with
covering map ~p : ~G → G. Write G ∼= ~G/H, with H = ker ~p.

Suppose that every projective unitary representation, ρ ′ : ~G → U(H) of the cov-
ering group admits a lifting, ρ ′ = p ◦ π, where π is a unitary representation of
~G.

Then we have a bijective correspondence
ρ : G → U(Ĥ)

projective unitary
representation of G

↔


π : ~G → U(H)

unitary representation of ~G
such that π(H) ⊂ kerp


Proof. Let π : ~G → U(H) be a unitary representation s.t. π(H) ⊂ kerp. Now the
map p ◦ π is trivial on H so by the universal property of the projection ~p we have the
following diagram

~G U(H)

G U(Ĥ)

π

~p p

∃!ρ

There exist a unique map ρ such that this commutes. Now continuity of ρ follows from
the universal property of quotient maps (~p is a quotient map, as it is open, continuous
and surjective), that ρ is a group homomorphism follows from the universal property
of projections in the setting of groups. We conclude that ρ is a projective unitary
representation.

By assumption every ρ arises this way: Given ρ we may define ρ ′ = ρ◦~p and use the
assumption to get a unitary representation π. Doing the above construction we regain
ρ, since ρ makes the diagram commute, and this property identifies ρ uniquely.

Proposition 3.4. In the bijective correspondence above (ρ 7→ π) we have that π is
irreducible if and only if ρ is irreducible.

Proof. Same as that of Prop. 2.26.

We now give a criterion for when a Lie group has such a lifting property.

Definition 3.5. A Lie algebra g is said to have trivial second cohomology group if for
any bilinear map θ : g× g→ R satisfying

θ(A,B) = −θ(B,A),

θ([A,B],C) + θ([B,C],A) + θ([C,A],B) = 0

for all A,B,C ∈ g. Then there exist some linear map ϑ : g→ R s.t.

θ(A,B) = ϑ([A,B])

for all A,B ∈ g.

Theorem 3.6 (Bargmann). Let G be a connected and simply connected Lie group.
Let LG denote its Lie algebra. Suppose that LG has trivial second cohomology group.
Then any projective unitary representation admits a lifting.

We will not prove this result but refer to [6, p. 9-16] for the details.

3.2 The Covering Group of the Poincaré Group
The previous section motivates that we should prove that the Lie algebra of the covering
group of the Poincaré group has trivial second cohomology group. We start by finding
the covering group.

The first result is that

Theorem 3.7. The covering group of the restricted Lorentz group is ~L↑
+ = SL2(C).

18



3.2 The Covering Group of the Poincaré Group

To prove this we do the following
Let H(2) = {σ ∈ SL2(C)|σ = σT } be the set of all Hermitian 2 × 2 matrices. Now

H(2) is a vectorspace over R with basis{
σ0 = I2, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]}
.

This is seen as for any σ ∈ H(2) we have σ12 = σ21 and σ11, σ22 ∈ R so

σ =

[
a c

c b

]
=
a + b

2
σ0 +<(c)σ1 + =(c)σ2 +

a − b

2
σ3.

Define φ : R4 → H(2) by φ(x) =
∑

µ x
µσµ. This is an isomorphism of vectorspaces over

R. Now any matrix A ∈ SL2(C) induces a linear map of R4 by the following diagram

H(2) H(2)

R4 R4

A(−)A∗

φ ∼=

ΛA

φ ∼=

That is ΛAx = φ
−1(Aφ(x)A∗). (Note that the map A(−)A∗ is well-defined.)

Lemma 3.8. The map Λ : SL2(C) → L↑
+, A 7→ ΛA is an open surjective continuous

group homomorphism with kernel kerΛ = {±I2}.

Proof. The first thing to show is that for SL2(C) matrices A, we have that ΛA is a
Lorentz transformation.

We have that 〈x, x〉 = detφ(x) so we see that

〈ΛAx,ΛAx〉 = detφ(ΛAx) = detAdetφ(x)detA∗ = 〈x, x〉.

By the parallelogram law we thus get that

〈ΛAx,ΛAy〉 =
〈ΛA(x + y), ΛA(x + y)〉 − 〈ΛA(x − y), ΛA(x − y)〉

4

=
〈x + y, x + y〉 − 〈x − y, x − y〉

4
= 〈x, y〉

so ΛA is a Lorentz transformation. The things left to prove is that (ΛA)
0
0 ≥ 1 and

that detΛA = 1. For the first of these consider the images of e0 = (1, 0, 0, 0) in the
diagram.

I2 H(2) H(2) AA∗

e0 R4 R4 ΛAe0

∈
A(−)A∗

3

∈

φ ∼=

ΛA 3

φ ∼=

Write A =

[
a b

c d

]
. Then

Aσ0A
∗ = AA∗ =

[
|a|2 + |b|2 ac + bd

ac + bd |c|2 + |d|2

]
And by the description above we see that

(ΛA)
0
0 = (ΛAe0)

0 =
|a|2 + |b|2 + |c|2 + |d|2

2
> 0.

Since ΛA is a Lorentz transformation we know that |(ΛA)
0
0| ≥ 1 (see section 2.1). We

conclude that (ΛA)
0
0 ≥ 1.

For the second part, detΛA = 1 we first prove the continuity.
The fact that Λ is a group homomorphism is clear by construction. Openness

and continuity of the map follows from the fact that all the coordinates of ΛA are
polynomial in the coefficients of A.
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3 LIFTING PROJECTIVE REPRESENTATIONS

The map A 7→ ΛA is continuous, and since SL2(C) is connected by Prop. 3.9, we
see that the image is connected. Since taking determinants is continuous we see that
the set of determinants {detΛA : A ∈ SL2(C)} is connected. Now, ΛA is a Lorentz
transformation for all A and so detΛA = ±1. But clearly detΛI2 = 1. We conclude
that detΛA = 1 for all A ∈ SL2(C).

We are left with proving surjectivity. We give an idea for the proof.
Write out an explicit formula for ΛA in terms of the coefficients of A. Then the

equations Λ = ΛA is just some polynomial equations in the coefficients of A, solve
them to get A ∈M2×2(C). Going through the above calculations, we see that we need
|detA| = 1 for ΛA to be a Lorentz transformation. Hence we may pick A ′ = 1√

detA
A

(with some choice of square root).
For the kernel we have

kerΛ = {A ∈ SL2(C) : AσA∗ = σ for all σ ∈ H(2)}.

By taking σ = I2 in this we see that A ∈ kerΛ is unitary. So Aσ = σA. By taking
σ = σ3 we see that A only has diagonal entries, and by further by taking σ = σ2 we
get that A = λI2 for some λ ∈ C. In total we see, that

kerΛ ⊂ {λI2 : λ ∈ C} ∩U(2) = {±I2}.

On the other hand {±I2} ⊂ kerΛ clearly.

To show that SL2(C) is the covering group we need the following result.

Proposition 3.9. SL2(C) is connected and simply connected.

The idea for this proof was given to me by my advisor Jan Philip Solovej.

Proof. We prove the homeomorphisms

SL2(C) ∼= SU(2)×M ∼= S3 × R3

where M is the set {H ∈ SL2(C) : H∗ = H, tr H > 0,detH = 1}. Since the latter is
connected and simply connected [5, p. 154, 365] we have the result.

The homeomorphism SL2(C) ∼= SU(2)×M is what is normally called polar decom-
position, see [8, p. 69]

Define first the map SL2(C)→ SU(2)×M by the following.
Let A ∈ SL2(C), then (AA∗)∗ = AA∗ is hermitian. Hence we may diagonalize

AA∗ = V∗DV, for some V, D =

[
µ1 0

0 µ2

]
, µ1, µ2 ∈ C. We claim that µ1, µ2 ≥ 0.

To prove this let x ∈ C2 be an eigenvector with eigenvalue µ1, then we have

µ1 ‖x‖2 = 〈µ1x, x〉 = 〈AA∗x, x〉 = 〈A∗x,A∗x〉 ≥ 0

and similarly for µ2. Hence (AA∗)1/2 = V∗D1/2V is well-defined.
Note that det(AA∗) = |detA|2 = 1 hence (AA∗)1/2 is invertible and µ1µ2 = 1 so

µ1, µ2 > 0.
Define now U = (AA∗)−1/2A. Then we see that U is unitary as follows

UU∗ = (AA∗)−1/2A
(
(AA∗)−1/2A

)∗
= (AA∗)−1/2(AA∗)(AA∗)−1/2 = I2.

Moreover, detU = 1. Define H = (AA∗)1/2 = AU−1. Then A = HU. Now H satisfies
H∗ = H and

tr H = tr (AA∗)1/2 = tr V∗D1/2V = tr D1/2 =
√
µ1 +

√
µ2 > 0.

This gives the first map SL2(C) 3 A 7→ (U,H) ∈ SU(2)×M. Injectivity is clear as the
(left) inverse is given by (U,H) 7→ HU.

To prove that it is surjective note that (HU)(HU)∗ = H2, and since we only have
one choice of square root H ′ with both tr H ′ > 0 and detH ′ = 1, we see that H ′ = H

and hence this map is surjective.
It is clear, the both the map and the inverse are continuous. This proves the first

homeomorphism.
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3.2 The Covering Group of the Poincaré Group

To see that M ∼= R3, note that any H ∈M must (by a similar argument as for H(2))
be of the form

H =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
with 0 < tr H = 2x0, and 1 = detH = (x0)2 − �x2. Hence x0 =

√
1 + �x2. It is clear that

the map H 7→ �x ∈ R3 is a homeomorphism.
To see that SU(2) ∼= S3 note that

SU(2) =

{[
a b

c d

]∣∣∣∣ad − bc = 1, |a|2 + |b|2 = 1

|c|2 + |d|2 = 1, ac + bd = 0

}
,

which is seen by writing out the components of I2 = UU∗ for U ∈ SU(2) and 1 = detU.
These equations then give that

SU(2) =

{[
a b

−b a

]∣∣∣∣ |a|2 + |b|2 = 1

}
,

from which it follows, that

SU(2) 3
[
a b

−b a

]
7→ (

<(a), =(a), <(b), =(b)
)
∈ S3

is a homeomorphism.

In total we have

Proof of Thm. 3.7. Combine Lem. 3.8 and Prop. 3.9.

Using this we see that ~P↑
+ = R4 o ~L↑

+ = R4 o SL2(C) is the covering group of the
restricted Poincaré group.

Something to note here is which A gets mapped to the rotations. These are exactly
the one preserving e0 i.e. σ0 = I2. That is Aσ0A

∗ = σ0. Hence AA∗ = I2 So these are
unitary. We conclude that the rotations are exactly SU(2). Note that this also proves
the following.

Proposition 3.10. The covering group of SO(3) is S̃O(3) = SU(2).

The decomposition of A into HU above then correspond to how any Lorentz transfor-
mation may be written as a product of a boost and a rotation.

We now want to find the covering group of P↑. Again we first find the covering
group of L↑, as the extension to P↑ is easy. This will amount to adding an element LP
to ~L↑

+ such that LP 7→ P.
For matrices A ∈ SL2(C) define

LA =

[
A 0

0 (A∗)−1

]
and LP =

[
0 I2
I2 0

]
.

Theorem 3.11. The covering group of the orthochronous Lorentz group is given by
~L↑ = {LA, LPLA : A ∈ SL2(C)}. The covering map is given by

LA 7→ ΛA

LP 7→ P

Proof. We need to show that this map is well-defined. This amounts to showing that
if LPLA = LA ′LP then PΛA = ΛA ′P. The commutation relation between LP and the
LA’s is given by L(A∗)−1 = LPLAL

−1
P as is an easy computation. We need to prove that

Λ(A∗)−1 = PΛAP
−1.
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3 LIFTING PROJECTIVE REPRESENTATIONS

To prove this consider the diagram

H(2) H(2) H(2) H(2)

R4 R4 R4 R4

(A∗)−1(−)A−1

(−)−1
det(−) A(−)A∗

(−)−1
det(−)

PΛAP
−1

φ ∼=

P ΛA

φ ∼=

P

φ ∼= φ ∼=

The left (and right) squares commutes by a straightforward computation. (Note that
all the maps are linear, so it suffices to check commutativity on a basis.) The top
commutes since σ2

0 = σ2
1 = σ2

2 = σ2
3 = I2. In conclusion the outer square commutes.

This proves that the map is well-defined and a group homomorphism (since A 7→ ΛA

is). Since A 7→ ΛA is open continuous and surjective we get that the above map is as
well.

It remains to show that {LA, LPLA : A ∈ SL2(C)} is simply connected.
Multiplication by LP is a homeomorphism, as it is its own inverse, and multipli-

cation is continuous. Hence {LA, LPLA : A ∈ SL2(C)} is the disjoint union of the two
subsets {LA : A ∈ SL2(C)} and {LPLA : A ∈ SL2(C)}, which, both being homeomor-
phic to SL2(C), are simply connected. The set {LA, LPLA : A ∈ SL2(C)} is thus simply
connected. We conclude that ~L↑ = {LA, LPLA : A ∈ SL2(C)} is the covering group.

3.3 Lie Algebra of the Poincaré Group

We compute the Lie algebra of the (covering group of the) Poincaré group to see that is
has trivial second cohomology group. The way, we compute it, (see below) is by using
the commutation relations of the group. These are the same as that of the covering
group, hence we may just consider the Lie algebra of the Poincaré group. To do this
we will find the generators of one-parameter subgroups spanning the whole group.

First note that (Rn,+) has Lie algebra Rn with the exponential map exp : x 7→ x

[3]. This is seen by the group isomorphism

Rn 3 (x1, . . . , xn) 7→

ex

1

· · · 0
...

. . .
...

0 · · · ex
n

 ∈


λ1 · · · 0

...
. . .

...
0 · · · λn

 ∈ GLn(R)

∣∣∣∣∣∣∣ λk > 0


Any Lorentz transformation may by Prop. 2.9 be parameterized by 6 coordinates
and the Poincaré group may then be parametrized by 10 coordinates. Moreover, the
discussion just before Prop. 2.9 gives us one-parameter subgroups t 7→ �ω = tej,
j = 1, 2, 3, and t 7→ �ϕ = tej, j = 1, 2, 3. Combining with the 4 one-parameter subgroups
describing the translations, t 7→ (teµ, I4) ∈ P↑, µ = 0, 1, 2, 3, we have in total 10
one-parameter subgroups spanning the entire group. We will denote the infinitesimal
generators as follows

−H0 Translation in the x0 direction,
pj Translation in the xj direction, j = 1, 2, 3,

−Nj Boost in the xj direction, j = 1, 2, 3,
Jj Rotation around/in the xj direction, j = 1, 2, 3.

The last 6 of these are generators of a matrix Lie algebra, (in explicit matrix form)
so we may calculate them as matrices and compute their commutation relations using
these explicit descriptions. We have the explicit forms

N1 =


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , J1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 .
And similarly for the rest, see section A.3.
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In order to compute the Lie bracket in the general case we will use the following
formula from [8, p. 49].

[Ai,Aj] =
d2

dsdt
qj(s)qi(t)qj(s)

−1

∣∣∣∣
t=s=0

.

We get the following results (again εjkm is the Levi-Civita symbol).

[pj,pk] = [pj,H0] = [Jj,H0] = 0

[Nj,pk] = −δjkH0 [Nj,H0] = −pj

[Jj,pk] = −
∑

m εjkmpm [Jj, Jk] = −
∑

m εjkmJm
[Nj,Nk] =

∑
m εjkmJm [Jj,Nk] = −

∑
m εjkmNm.

(2)

Computing these is trivial. We give the description of how in the appendix, see section
A.4. Note that we are in the setting of Thm. 2.36, so the Lie algebra is the span of
these generators.

Theorem 3.12. The Lie algebra of the covering group ~P↑
+ has trivial second coho-

mology group.

Proof. Let θ be any bilinear map satisfying the defining equations. We need to define
a linear map ϑ s.t. θ(A,B) = ϑ([A,B]). Since the generators form a spanning set by
Thm. 2.36, we only need to define ϑ on generators. Hence for any generator Aj we
need to define ϑ(Aj) such that, if [Ak,Ai] = Aj, then ϑ(Aj) = θ(Ak,Ai). It is clear
by inspection that any basis element Aj is of the form Aj = ±[Ak,Ai] for some other
basis elements Ak,Ai. But Ak,Ai might not be unique. For instance

[J1, J2] = [N2,N1].

Hence to prove that we may well-define ϑ in this manner, we need to prove that, if
[Ak,Ai] = ±[A ′

k,A
′
i], then θ(Ak,Ai) = ±θ(A ′

k,A
′
i). By symmetry and the anticom-

mutativity of [−,−] this reduces to proving the equations

−θ(N3,H0) = −θ(J1,p2) = θ(J2,p1)

θ(N1,p1) = θ(N2,p2)

θ(J1,N2) = −θ(J2N1)

−θ(J1, J2) = θ(N1,N2).

Proving these proves that ϑ is well-defined and that θ(A,B) = ϑ([A,B]) for all A,B
with [A,B] 6= 0. It remains to check that, if [A,B] = 0, then θ(A,B) = 0. Again by
symmetry and anticommutativity this reduces to the equations

θ(p1,p2) = θ(p1,H0) = θ(J1,H0) = θ(N1,p2) = 0.

As an example we prove that θ(J1,N2) = −θ(J2,N1).
Since N2 = −[J3,N1] we have the following

θ(J1,N2) = θ(J1,−[J3,N1])

= θ([J3,N1], J1)

= −θ([J1, J3],N1) − θ([N1, J1], J3) (Jacobi)

= −θ(J2,N1).

The rest follow by a similar argument.

Corollary 3.13. We have a bijective correspondence
ρ : P↑ → U(H)

projective unitary
representation of P↑

↔


π : ~P↑ → U(H) unitary
representation of ~P↑

such that π(0,−I4) ∈ kerp


Proof. Combine the results of this section noting that the kernel of the covering map
is {(0,±I4)}.
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4 INDUCED REPRESENTATIONS

3.4 Detour - γ-matrices

We define the γ-matrices γ = (γ0, γ1, γ2, γ3). (We have a slight abuse of notation as
γµ are matrices.) We will not need these until the end of section 5, but we nonetheless
define them now, as we will use the language of this section for the construction.

Define, similarly to φ, the bijective linear map φ ′ : R4 → H(2) by

φ ′(x) = x0σ0 − x
1σ1 − x

2σ2 − x
3σ3.

Define now γ by

γ(x) =

[
0 φ(x)

φ ′(x) 0

]
.

And write 〈γ, x〉 = γ(x). This is (sort of) meaningful once one defines γµ = γ(eµ) i.e.

γ0 =

[
0 I2
I2 0

]
, γk =

[
0 σk

−σk 0

]
.

It is an easy computation to see that (see [8, p. 72])

LA〈γ, x〉L−1
A = 〈γ,ΛAx〉, LP〈γ, x〉L−1

P = 〈γ, Px〉.

4 Induced Representations

In this section we describe a class of representations, the induced representations. We
explain the construction in general, and do the specific case of the Poincaré group.
This section is based on [8, p. 82-92] and [6, p. 56-60].

It is a fact that every irreducible unitary representation of ~P↑ arises as an induced
representation. This motivates why we consider the induced representations. We will
not prove this result, as a proof of this is beyond the scope of this thesis. See the
presentation in [1] for a full proof.

4.1 Construction

We explain the construction of the induced representations for a general Lie group.
This section is based on [8, p. 82-83].

Let G be a separable Lie group, (we say that a Lie group is separable if it has
countably many connected components,) and K ≤ G a closed subgroup. Suppose
τ : K→ U(X) is a unitary representation of K in some separable Hilbert space X.

The set G/K = {gK|g ∈ G} = {[g]|g ∈ G} is not in general a group, but G still acts on
G/K by h.[g] = h.gK = (hg)K = [hg]. Suppose we have a measure ν on G/K invariant
under this action, i.e. ∫

G/K
f([g])dν([g]) =

∫
G/K

f([hg])dν([g])

for all (measurable) functions f : G/K→ R and all h ∈ G.
Consider (measurable) functions φ : G → X satisfying

φ(gk−1) = τ(k)φ(g), (3)

for all g ∈ G and k ∈ K. We claim that ‖φ(g)‖X only depends on [g]:
Suppose that [h] = [g] i.e. h = gk−1. Then

‖φ(h)‖2X =
〈
φ(h), φ(h)

〉
X

=
〈
τ(k)φ(g), τ(k)φ(g)

〉
X

=
〈
τ(k)∗τ(k)φ(g), φ(g)

〉
X

= ‖φ(g)‖2X
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4.2 Wigner States

since τ is unitary. We conclude that ‖φ(g)‖X only depend on [g]. Define

M =

{
φ : G → X

∣∣∣∣∣φ(gk−1) = τ(k)φ(g) ∀g ∈ G ∀k ∈ K∫
G/K ‖φ(g)‖X dν([g]) <∞

}
/ ∼

where the relation ∼ is that of ν-a.e. equality. The calculations above show that this
is well-defined.

We claim that this is a Hilbert space with inner product

〈φ1, φ2〉M =

∫
G/K

〈φ1(g), φ2(g)〉X dν([g]).

To show that this is well-defined is a similar computation as to show that ‖φ(g)‖X only
depend on [g]. And the fact that this defines an inner product follows from the fact
that 〈−,−〉X is an inner product. We still need to show that M is complete. This we
will not prove, as it will follows from Prop. 4.2.

Define the operator πτ(h) by (πτ(h)φ)(g) = φ(h−1g). Then πτ(h)φ ∈ M. We claim
that the map h 7→ πτ(h) is a unitary representation of G in M.

Continuity follows from multiplication in G being continuous. The fact that πτ is
a group homomorphism is clear. To prove that πτ is unitary we have the following

〈πτ(h)φ,φ ′〉M =

∫
G/K

〈
φ(h−1g), φ ′(g)

〉
X

dν([g])

=

∫
G/K

〈
φ(g), φ ′(hg)

〉
X

dν([g])

= 〈φ, πτ(h−1)φ ′〉M.

Hence (πτ(h))∗ = πτ(h−1) = (πτ(h))−1 so πτ is unitary.

Definition 4.1. The map πτ : G → U(M) defined above is called the representation of
G induced by τ or the induced representation. τ is called the inducing representation.

4.2 Wigner States
Now, the description of M seems rather long. Since the functions φ ∈ M are mostly
controlled by their values on G/K it would be sensible to think that we may view M

as some Hilbert space of functions on G/K. This motivates the following.
Suppose we have a canonical way of finding a representative of the cosets, i.e. a

function s : G/K → G s.t. s(gK) ∈ gK. Define S = s(G/K) to be the image. Then G
acts on S by h.s(gK) = s(hgK). This action makes the diagram

G/K S

G/K S

s

∼

h. h.

s

∼

commute. Hence an invariant measure ν on G/K induces an invariant measure ~ν on S.
Given some function ζ on S, we want to define some function ζe on G satisfying

Eqn. (3) and ζe|S = ζ.
Let g ∈ G and s = s(gK). Then g ∈ sK = gK so there exists some unique k ∈ K

such that g = sk−1. Then

ζe(g) = ζe(sk−1) = τ(k)ζe(s) = τ(k)ζ(s).

Hence this property determines ζe uniquely. So the map ζ 7→ ζe is well-defined.

Proposition 4.2. The maps

M � L2(S, ~ν,X)
φ 7→ φ|S = ζ

φ = ζe ←[ ζ

are mutually inverses and unitary.
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4 INDUCED REPRESENTATIONS

Proof. The fact, that they preserve the inner products, follows from the fact, that
either integral is over the same set, (with the above identification,) and that〈

ζ(s), ζ ′(s)
〉
L2(S,~ν,X)

=
〈
φ(g), φ ′(g)

〉
M

by a similar computation as in the previous section. It follows that both maps preserve
the finiteness of the integrals, i.e. norms, as well.

From the calculation done above, read either left to right or right to left, it follows
that these maps are inverses.

Linearity is clear by construction of either of the maps. Unitarity follows once we
show that

〈φ, ζe〉M = 〈φ|S , ζ〉L2(S,~ν,X) .

But this is clear using the above. Just apply the map φ 7→ φ|S on the left side. We
conclude that they are unitary.

Elements of L2(S, ν,X) are called Wigner states, see [8, p. 89].
These unitary maps give a unitary equivalence between πτ and a unitary represen-

tation πτ
w of G in L2(S, ~ν,X). We now compute πτ

w(g) explicitly.
We have (πτ

w(h)ζ)(s) = π(h)φ(s) = φ(h−1s). Now h−1s ∈ h−1sK. This set has
canonical representative h−1.s so h−1s = (h−1.s)k−1 for some (unique) k ∈ K. This k
is given by k = s−1h(h−1.s) and we conclude that

(πτ
w(h)ζ)(s) = φ(h

−1s)

= φ((h−1.s)k−1)

= τ(k)φ(h−1.s)

= τ(s−1h(h−1.s))ζ(h−1.s).

So this is the action of πτ
w.

4.3 The Dual Group
For the subgroup K in the construction of the induced representations, we will pick
the stabilizer of ~P↑ acting on the dual group of R4. To do this we first define the dual
group in general.

Definition 4.3. Let G be an abelian group.
A character of G is a one-dimensional unitary representation (i.e. in C) of G. Point-

wise multiplication and pointwise inversion give the set of characters the structure of
a group. We call this group the dual group of G and denote it by

Ĝ = {χ : χ character of G}.

Proposition 4.4. The dual group of R̂4 is

R̂4 =
{
χp = ei〈p,−〉 : p ∈ R4

}
∼= R4

with the isomorphism χp 7→ p.

Proof. Any one-dimensional unitary representation of R4 is of the form χ : x 7→ eiy
Tx

for some y ∈ R4. This follows by linearity and unitarity. By picking a basis according
to 〈−,−〉 we are done.

4.4 Action of ~P↑
+ on R̂4

We find the stabilizer of the action and describe how the set S is in a natural bijection
with the orbits. This section is based on [6, p. 56-60] and [8, p. 85-90].

We will identify R̂4 with R4 as in the proposition above. Note that the interpretation
of the elements p ∼ χp ∈ R̂4 now changes. Instead of being the position they are the
momentum, i.e. p0 is the energy and �p is the momentum in the spatial coordinates.
The equations we get from this are then written in momentum-space.

We start with the general construction.
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4.4 Action of ~P↑
+ on R̂4

Definition 4.5. Suppose the group G acts on some set M. let q ∈M. We will denote
the orbits of M under this action by Oq = {g.q ∈M|g ∈ G}.

The stabilizer Gq = {g ∈ G|g.q = q} will sometimes be called the isotropy group.

Note that we have a natural bijection between the sets G/Gq and Oq.

Oq 3 g.q 7→ gGq ∈ G/Gq.

Of course we need to prove that this is well-defined, but if g, g ′ has g.q = g ′.q, then
they differ by an element of Gq. This bijection is natural in the sense that it commutes
with the action by G,

Oq g.q (hg).q Oq

G/Gq gGq hgGq G/Gq

3 h. ∈

3 h. ∈

Hence we may construct the set S as above by using this bijection. Then

Oq 3 g.q 7→ s(gGq) ∈ S

is a bijection, which is natural in the above sense.
We now specialize this construction to G = ~P↑ acting on M = R4 E P↑. This action

is by conjugation,

(b, L).(a, I4) = (b,ΛL)(a, I4)(b,ΛL)
−1 = (b,ΛL)(a, I4)(−Λ

−1
L b,Λ−1

L ) = (ΛLa, I4).

Hence the orbits are

Oq = {ΛLq|(b, L) ∈ ~P↑
} = {Λq|Λ ∈ ~L↑

},

and the isotropy group is
~P↑
q = R4 o ~L↑

q,

where ~L↑
q = {L ∈ ~L↑|ΛLq = q}.

Definition 4.6. We say that ~L↑
q is the little group of q.

Proposition 4.7. We have the following exhausting list of orbits of R4 under the
action by ~P↑, with µ > 0

(i) q = (µ, 0, 0, 0) Oq = {p ∈ R4| 〈p, p〉 = µ2, p0 > 0},
(ii) q = (−µ, 0, 0, 0) Oq = {p ∈ R4| 〈p, p〉 = µ2, p0 < 0},
(iii) q = (0, µ, 0, 0) Oq = {p ∈ R4| 〈p, p〉 = −µ2},
(iv) q = (1, 1, 0, 0) Oq = {p ∈ R4| 〈p, p〉 = 0, p0 > 0},
(v) q = (−1, 1, 0, 0) Oq = {p ∈ R4| 〈p, p〉 = 0, p0 < 0},
(vi) q = (0, 0, 0, 0) Oq = {0}.

Proof. It is trivial to prove that these are disjoint and exhaust R4. It remains to be
shown that these are indeed orbits, i.e. that Λq ∈ Oq for any Λ ∈ L↑, and that for any
p ∈ Oq there exists Λ ∈ L↑, such that p = Λq.

First note that any p = (p0, �p) ∈ R4 can, by rotations, be mapped onto the set
{p ∈ R4 : p2 = p3 = 0}. (We may in fact also assume that p1 ≥ 0). Now the orbits (in
the set {p ∈ R4 : p2 = p3 = 0}) under boosts in the p1-directions are given by

(i) {p : (p0)2 − (p1)2 = µ, p0 > 0},
(ii) {p : (p0)2 − (p1)2 = µ, p0 < 0},
(iii) {p : (p0)2 − (p1)2 = −µ},
(iv) {p : p0 = ±p1, p0 > 0},
(v) {p : p0 = ±p1, p0 < 0},
(vi) {0}
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4 INDUCED REPRESENTATIONS

Figure 6: The orbits of R4 under the action by ~P↑, see Prop. 4.7. Here is seen the intersection
with the plane p2 = p3 = 0. This captures all the interesting parts of the orbits. Changing
the parameter µ > 0 we see that we exhaust the whole plane. Some of the orbits seem
disconnected in this picture, namely the cases (iii), (iv) and (v). This is an artefact of only
showing the intersection with some plane. In the space, R4, we need to rotate this picture
around in the last 2 coordinates. This connects the two halves of the orbits from cases (iii),
(iv) and (v).

for µ > 0 a parameter. To see this note that boosts in the p1-direction are given by
coshω sinhω 0 0

sinhω coshω 0 0

0 0 1 0

0 0 0 1


for ω ∈ R. Hence the orbits are just the disjoint hyperbolas claimed above. This proves
that the six claimed orbits are indeed stable under the action. They are contained in
only one orbit each. It remains to show that no two are contained in the same orbit.

On any orbit 〈p, p〉 is constant. Moreover, by definition of L↑, we see that the action
preserves the sign of p0. Hence the list above are exactly he list of orbits under the
action of L↑, i.e. also that of ~P↑.
The interpretation here is that �p is the momentum, p0 is the energy and µ is the mass
(in cases (i) and (ii)), see [6, p. 63]. We restrict to the case of positive mass and energy,
that is case (i). We may parameterize the orbit by{(√

µ2 + �p2, �p

)∣∣∣∣�p ∈ R3

}
.

The following may as well be applied to the case (ii), we only need to change a few
signs here and there. We only do this for the case (i) for clarity of the arguments. Case
(ii) correspond to positive mass and negative energy. With this parametrization we
induce a measure m3, dm3(�p) = d3�p from the Lebesgue measure on R3. Using this
we construct the measure ν to have density 1√

µ2+�p2
= 1

p0 with respect to this induced
measure, i.e.

dν =
d3�p√
µ2 + �p2

=
d3�p

p0
.

Lemma 4.8. The measure ν defined above is invariant under the action of ~P↑.
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4.5 Irreducibility

Proof. It is immediate that this measure is invariant under the rotations. For the
boosts the transformations introduce a factor of the Jacobian. We need to prove,
that this factor corresponds to, how the factor p0 =

√
µ2 + �p2 changes. Since any map

(taking p to p ′) may be seen as the product of two boosts (and possibly also a rotation,
but this is not important). The first taking p to q = (µ, 0, 0, 0) and the second taking
q to p ′. Hence it is enough to check for boosts away from q = (µ, 0, 0, 0), i.e. when
evaluating the Jacobian for this transformation, we may just evaluate it at q.

For a boost with velocity �v we have p = Λq, so �p = µγ(v)�v, and p0 = µγ(v). Now
the Jacobian is the determinant of the bottom right 3 × 3 matrix in the boost. This
matrix, written in a basis with v̂ = �v/v as the first vector, is

I3 +
γ − 1

�v2
�v�vT = I3 +

v0
0

(
v 0 0

) γ − 1

v2
=

γ 0 0

0 1 0

0 0 1

 .
Hence the determinant is γ = p0

µ
. So

dν(p) = dν(Λq) =
d3Λq

(Λq)0
=
p0

µ

d3�q

p0
=

d3�q

q0
= dν(q)

where we have written q = (µ, 0, 0, 0) as (q0, �q) for clarity. This proves that the measure
is invariant.

We are now ready to explicitly state how all representations arises as induced repre-
sentations.

Theorem 4.9 ([6, p. 50] or [8, Thm. 3.7.]). Let π be an irreducible unitary rep-
resentation of ~P↑. Then π ' πτ is equivalent to an induced representation where
τ(a, L) = χq(a)σ(L) for some unitary representation σ of ~L↑

q in X. Furthermore, σ
is determined uniquely up to equivalence and Oq is determined uniquely.

We now want to find ~L↑
q in the case q = (µ, 0, 0, 0).

Proposition 4.10. Let q = (µ, 0, 0, 0) then ~L↑
q = {LU, LPLU : U ∈ SU(2)}.

Proof. We have, similarly as the comment after Lemma 3.9, that ~L↑
q is exactly the set

of LA for which Aσ0A
∗ = σ0 and products of such with LP. Now, σ0 = I2 and we

conclude, that A is unitary.

4.5 Irreducibility
Having now constructed the induced representations we give necessary and sufficient
conditions for their irreducibility. This section is based on [8, p. 91-92].

We use the Wigner states on G = ~P↑ and K = ~P↑
q = R4o ~L↑

q. Let σ : ~L↑
q → U(X) be

a unitary representation of ~L↑
q and let τ be given by τ(a, L) = χq(a)σ(L) = ei〈q,a〉σ(L).

We define the canonical representatives using the correspondence between G/K and
Oq given by [g] 7→ p = g.q. For case (i) let s([g]) = (0, Lp), where Lp correspond to the
boost ΛLp , the unique boost Λ with Λq = p = g.q. There are two such Lp by Lem.
3.8. Any one of them will work, but for the sake of explicitly picking one impose (just
for this) a total ordering (say lexiographic) on M4×4 and pick the larger according to
this ordering.

This gives a representation πτ
w of ~P↑ in L2(S, ~ν,X). To calculate it explicitly we

have that
(a, L).(0, Lp) = (0, LΛLp)

since we identify (0, Lp) ∼ p ∈ Oq, on which ~P↑ acts by left multiplication. For the
argument s−1h(h−1.s) we have

(0, Lp)
−1(a, L)((a, L)−1.(0, Lp)) = (0, L−1

p )(a, L)(0, LΛ−1
L

p)

= (0, L−1
p )(a, LLΛ−1

L
p)

= (Λ−1
Lp
a, L−1

p LLΛ−1
L

p).
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4 INDUCED REPRESENTATIONS

Moreover, 〈
q,Λ−1

Lp
a
〉
=

〈
ΛLpq, a

〉
= 〈p, a〉 .

We conclude that(
πτ
w(a, L)ζ

)
(0, Lp) = τ

(
(0, Lp)

−1(a, L)((a, L)−1.(0, Lp))
)
ζ
(
0, LΛ−1

L
p

)
= ei〈p,a〉σ

(
L−1
p LLΛ−1

L
p

)
ζ
(
0, LΛ−1

L
p

)
is the explicit form of the representation.

With the construction of S above, we may instead think of functions on Oq, as
S and Oq are in a natural bijective correspondence c.f. the previous section. The
representation thus becomes(

πτ
w(a, L)ζ

)
(p) = ei〈p,a〉σ

(
L−1
p LLΛ−1

L
p

)
ζ
(
Λ−1

L p
)
. (4)

It is a representation of ~P↑ in the Hilbert space Mq = L2(Oq, ν,X).
We are now almost ready to prove the irreducibility of the induced representations.

In order to do this we will use Schur’s lemma (Thm. 2.27). Hence we need to consider
(some of) the bounded linear operators.
Lemma 4.11. Let B : L2(S, ν,X) → L2(S, ν,X) be a bounded linear operator. here
S ⊂ Rn is some set, ν is some measure, which is finite on all compact sets and X is
some separable Hilbert space. Suppose that

Bei(−)·a = ei(−)·aB

For all a ∈ Rn. Here ei(−)·a is the multiplication operator (ei(−)·af)(p) = eip·af(p).
Then B is an operator on X, i.e. (Bf)(p) = B(p)f(p) for all p ∈ S.
Some of the ideas for this proof was given to me by my advisor Jan Philip Solovej.

Proof. We first prove, that Bĝ = ĝB for all Schwartz functions ĝ ∈ S(Rn). Here ĝ is
the operator defined by (ĝf)(p) = ĝ(p)f(p). Since the Fourier transform is a bijection
S→ S, these are in fact all Schwartz functions.

Write ĝ =
∫
Rn e

−ip·xg(x)dx (with some power of
√
2π hidden in the measure) as a

Fourier transform. Then we have

(Bĝ)f = B(ĝf)

= B

(∫
Rn

e−i(−)·xf(−)g(x)dx
)

∗
=

∫
Rn

Be−i(−)·xf(−)g(x)dx

=

∫
Rn

e−i(−)·x(Bf)(−)g(x)dx

= ĝBf

for all f ∈ L2(S, ν,X) for which ∗ holds. We prove it holds for all such f. We consider
the inner products. Let h ∈ L2(S, ν,X) and write fx(p) = e−ip·xf(p). Then〈

h, B

(∫
Rn

fxg(x)dx
)〉

L2

=

〈
B∗h,

∫
Rn

fxg(x)dx
〉

L2

=

∫
S

〈
(B∗h)(p),

∫
Rn

fx(p)g(x)dx
〉

X

dν(p)

=

∫
S

∫
Rn

〈(B∗h)(p), fx(p)g(x)〉X dxdν(p)

∗∗
=

∫
Rn

∫
S

〈(B∗h)(p), fx(p)g(x)〉X dν(p)dx

=

∫
Rn

〈B∗h, fx〉L2 g(x)dx

=

∫
Rn

〈h, Bfx〉L2g(x)dx

=

〈
h,

∫
Rn

Bfxg(x)dx
〉

L2

.

30



4.5 Irreducibility

We used Fubini’s thm. in ∗∗. By construction g ∈ S ⊂ L1 and ‖fx(p)‖X = ‖f(p)‖X.
Hence we get∫

Rn

∫
S

∣∣〈(B∗h)(p), fx(p)g(x)〉X
∣∣ dν(p)dx

≤
∫
Rn

∫
S

‖(B∗h)(p)‖X ‖fx(p)‖X |g(x)|dν(p)dx

≤
∫
Rn

|g(x)|dx
(∫

S

‖(B∗h)(p)‖2X dν(p)
)1/2 (∫

S

‖f(p)‖2X dν(p)
)1/2

= ‖g‖L1 ‖B∗h‖L2(S,ν,X) ‖f‖L2(S,ν,X) <∞.
So we may conclude as above.

Since X is separable this proves that ∗ holds for all f ∈ L2(S, ν,X), i.e. that B
commutes with multiplication by (C-valued) Schwartz-functions.

We now want to prove that 1ΩBf = B1Ωf for all f ∈ L2(S, ν,X). This can be
done by approximating 1Ω by Schwartz-functions using an approximate unit (uk)k∈N.
Then (uk ∗ 1Ω) ∈ S(Rn) converges to 1Ω for k → ∞. It remains to be shown that
((uk) ∗ 1Ω)f → 1Ωf for all f ∈ L2(S, ν,X). This involves taking the 2-norm of the
difference and using dominated convergence. We leave out the details. Now, the
previous gives, B(uk ∗ 1Ω)f = (uk ∗ 1Ω)Bf. Taking limits and using the continuity of B
we get the desired.

Now define for all p ∈ S the operator B(p) : X→ X by

B(p)ξ = B(ξ1Ω)(p)

for some bounded set Ω ⊂ S with p ∈ Ω. To prove that this is well-defined consider
the following for any h ∈ L2(S, ν,X)

B(h)(p) = B(h1Ω)(p) + B(h(1 − 1Ω))(p)

= B(h1Ω)(p) + 1Ω(p)B(h(1 − 1Ω))(p)

= B(h1Ω)(p) + B(1Ωh(1 − 1Ω))(p)

= B(h1Ω)(p).

Using this on 1Ω ′ and 1Ω for two sets Ω ′,Ω s.t. p ∈ Ω ∩Ω ′ we see that

B(ξ1Ω)(p) = 1Ω ′(p)B(ξ1Ω)(p) = B(ξ1Ω1Ω ′)(p) = 1Ω(p)B(ξ1Ω ′)(p) = B(ξ1Ω ′)(p).

Hence B(p) is well-defined.
Now to prove that (Bf)(p) = B(p)f(p) suppose first that f is simple (i.e. taking only

finitely many values) and compactly supported. Then f =
∑N

i=1 ξi1Ωi
and so(

B
∑N

i=1 ξi1Ωi

)
(p) =

∑N
i=1 1Ωi

(p)B(p)ξi = B(p)f(p).

Now the set of compactly supported simple functions is dense. To see this, note that
any function f can be written as the limit of simple functions fj → f, and every fj can
be written as a limit of compactly supported simple functions f(j,k) → fj. Then the
net (f(j,k))(j,k) (ordered by (j, k) ≥ (j ′, k ′) if j ≥ j ′ and k ≥ k ′) is seen to converge to f.

In conclusion we may extend by continuity to see that (Bf)(p) = B(p)f(p) for all
f ∈ L2.

Finally we may prove the main theorem, that the induced representations constructed
above are irreducible.

Theorem 4.12. Let τ(a, L) = χq(a)σ(L) be defined as above, with some unitary
representation σ of ~L↑

q in X. Then the following are equivalent

• σ is irreducible.

• πτ
w is irreducible.
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4 INDUCED REPRESENTATIONS

Proof. Suppose first that σ is reducible. Then there exists some proper invariant sub-
space X ′ for σ. We immediately get, that the space L2(Oq, ν,X

′) is a proper invariant
subspace for πτ

w. We conclude that πτ
w is reducible.

Suppose now that σ is irreducible.
We use Schur’s lemma (Thm. 2.27) to prove that πτ

w is irreducible. Hence let
B : Mq →Mq be bounded linear with πτ

w(a, L)B = Bπτ
w(a, L) for all (a, L) ∈ ~P↑.

First, using this for elements (a, I4) we see that(
B(ei〈−,a〉ζ)

)
(p) = (Bπτ

w(a, I4)ζ) (p) = (πτ
w(a, I4)Bζ) (p) = e

i〈p,a〉(Bζ)(p).

Hence by Lemma 4.11 we have that B is action by an operator on X (dependent on p),
i.e. (Bζ)(p) = B(p)ζ(p).

Extend the functions Bζ and ζ by the map ζ 7→ ζe of Prop. 4.2. Hence they satisfy
Eqn. (3). Extend B to be constant on the cosets (0, Lp) ~L↑

q.
We may thus still think of B as an (operator-valued) function on Oq. Combining

this we get for L ∈ ~L↑ that

(Bζ)
(
(0, Lp)(0, L)

−1
)
= B(p)ζ

(
(0, Lp)(0, L)

−1
)
.

Using Eqn. (3) on both sides we arrive at(
σ(L)B(p)

)
ζ(p) = σ(L)(Bζ)(p) = (B(p)σ(L)) ζ(p).

Since this holds for all functions ζ, we conclude (by picking enough such ζ for each p,
say a family having as values a basis for X) that

σ(L)B(p) = B(p)σ(L)

for all L ∈ ~L↑
q. Since σ is irreducible, we get by Schur’s Lemma (Thm. 2.27), that

B(p) = b(p) idX is multiplication by a function of p.
Now, using the assumption on elements of the form (0, L) we get

b
(
Λ−1

L

)
σ
(
L−1
p LLΛ−1

L
p

)
ζ
(
Λ−1

L p
)
= σ

(
L−1
p LLΛ−1

L
p

)
b
(
Λ−1

L

)
ζ
(
Λ−1

L p
)

= (πτ
w(0, L)Bζ) (p)

= (Bπτ
w(0, L)ζ) (p)

= b(p)σ
(
L−1
p LLΛ−1

L
p

)
ζ
(
Λ−1

L p
)
.

for all ζ. This is (
b(Λ−1

L p) − b(p)
)
(πτ

w(0, L)ζ)(p) = 0.

Picking enough ζ for each L we conclude that b(Λ−1
L p) = b(p) for all L ∈ ~L↑. So b is

constant on the orbit Oq. We conclude that B = b idH is multiplication by a constant.
Another application of Schur’s Lemma (now in the opposite direction) proves that πτ

w

is irreducible.

4.6 Concluding Remarks
We have by Thm. 4.9, that all the irreducible unitary representations are given as
induced ones. On the other hand Thm. 4.12 gives an exact criterion, for when an
induced representation is irreducible. Hence this gives a full classification of all the
irreducible unitary representations of the covering group of the Poincaré group.

In order to give a more explicit description of all the irreducible unitary represen-
tations of ~P↑, we need to find all the irreducible unitary representations of SU(2), and
see which of these extend to representations of ~L↑

q. See [6, p. 68] for a description of
these.

The important thing to note, is that these unitary representations are in bijective
correspondence with the non-zero integers r = 0, 1, 2, . . .. These correspond to the spin
of the elementary particles, in the sense that the spin is the given by r

2
.

Together with Thm. 4.9 we see, that the irreducible unitary representations are
parameterized by their mass µ and spin r

2
. For the irreducible unitary representations

of ~P↑
+ we do not need to check for such extensions, as the little group here is SU(2),

see [6, p. 60].
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5 The Dirac Equation

As the final part of this thesis we consider an example of an induced representation,
namely that of positive mass and spin-1/2. This will lead to the Dirac equation in
covariant form. This section is based on [8, p. 93-97].

5.1 The Inducing Representation

The case of positive mass and spin-1/2 correspond to the inducing representation τ
with σ(L) = L in C4 [8, p. 93]. The representation σ is not irreducible. All L ∈ ~L↑

q have

the form L =

[
U 0

0 U

]
, with U ∈ SU(2), or they are a product of such with LP. Hence

the subspaces X+ = {(v, v) : v ∈ C2} =
I4+Lp

2
C4 and X− = {(v,−v) : v ∈ C2} = I4−LP

2
C4

are invariant. By inspection X± have no proper invariant subspaces, so σ is irreducible
(using the definition) when seen as a representation in X± = Q±C4 where Q± = I4±LP

2
.

Note that σ is a unitary representation. Thus the induced representation πτ is an
irreducible unitary representation of ~P↑ in M± = Q±M ∼= L2(Oq, ν,X

±).

5.2 Covariant States

We do a construction akin to the construction of the Wigner States. Let G be a
separable Lie group and K ≤ G be a closed subgroup. We are given an inducing
unitary representation τ of K

Suppose that τ = ~τ|K is the restriction of a (not necessarily unitary) representation
τ of the whole group. Again we consider function φ on G satisfying Eqn. (3). We may
then construct new functions (called covariant states) ~ψ(g) = ~τ(g)φ(g), prove that
they are constant on the cosets, define an inner product of such functions, and prove,
that the set C of such functions is a Hilbert space isomorphic to M. The details may
be found in [8, p. 94].

The important relation to note is that for covariant states we have ~ψ(s) = ~τ(s)ζ(s)

for the canonical representatives sK 3 s ∼ p ∈ Oq.

5.3 Covariant Dirac Equation

For the Poincaré group the inducing representation σ is the restriction of ~σ(L) = L for
all L ∈ ~P↑. This is clearly a representation. We may thus use the above construction
to get covariant states ~ψ. Since we may pick our canonical representatives to be on the
orbit Oq, we have ~ψ(p) = ~τ(0, Lp)ζ(p) = Lpζ(p) for ζ ∈ Mq.

Still we have that the representation σ, hence also πτ, is not irreducible. We have
the projection operators Q± onto the invariant subspaces. On M this is just Q± again,
but how are the projection operators on C? To solve this consider for ζ ∈ M±

q

~ψ(p) = Lpζ(p) = LpQ
±ζ(p) = (LpQ

±L−1
p )Lpζ(p) = (LpQ

±L−1
p )~ψ(p).

Thus the operator LpQ±L−1
p is trivial on C±

q = LpM
±
q (we have a slight abuse of

notation here, the p in the index varies as the argument of the function ~ψ) and zero
on LpM∓

q . It is thus a projection.
To write out this operator in full detail we need to recall the γ-matrices from section

3.4. The important relation is that L〈γ, x〉L−1 = 〈γ,ΛLx〉. Using this on x = q (a formal
equality) and L = Lp we get

〈γ, p〉 = 〈γ,ΛLpq〉 = Lp〈γ, q〉L
−1
p = Lpγ

0µL−1
p = µLpLPL

−1
p .

Now, writing this operator out in full we have

LpQ
±L−1

p =
I4 ± LpLPL−1

p

2
=
µI4 ± 〈γ, p〉

2µ
.
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6 CONCLUSION AND PERSPECTIVE

Restricting to ~ψ ∈ C±
q we get 〈γ, p〉~ψ(p) = ±µ~ψ(p). Considered only on the subspace

C+
q we get the Dirac Equation in covariant form [8, p. 97]

〈γ, p〉~ψ(p) − µ~ψ(p) = 0.

This equation is written in momentum-space (i.e. p-space). To transform the equation
into position-space (i.e. x-space) we need to use the Fourier transform. We will not do
this but refer to [8, p. 97-102] for the details. One thing to note is that the operator
of multiplication by p transform into a differentiation operator (with some factor of i
as well). Thus, in position-space, the Dirac Equation is a first-order partial differential
equation,

i
∑
µ

γµ ∂

∂xµ
ψ(x) − µψ(x) = 0,

see [8, p. 101]. This is similar to the Schrödinger equation (though this one is second
order) from classical quantum mechanics, see [2].

6 Conclusion and Perspective

We have in section 4 described all the irreducible unitary representations of the covering
group of the Poincaré group corresponding to positive mass and energy. Combining this
with the results from section 3, we thus get all the projective unitary representations
of the Poincaré group. Hence all the elementary particles with non-zero mass and
positive energy. We have done this by lifting to representations of the covering group
and through the method of induced representations.

We found that all these (projective) representations are classified by two parameters,
corresponding to the mass and spin of the corresponding elementary particle.

In this presentation we have worked with space inversion and for particles with non-
zero mass and positive energy. This leads to some obvious ways to pursue further work.
Namely including time reversal as well, or working with other orbits, corresponding to
particles with other parameters for their mass. Having a mass of zero is also a relevant
physical setting, for instance photons, hence this orbit is of particular importance as
well.

Another possible extension is to allow the existence of charge. We have worked in a
universe without charge, but one might include charge and thus also a charge-inversion
operator akin to space and time inversions resp. reversals. An important result to note
here is the CPT-theorem, see for instance [7].
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A POSTPONED PROOFS AND ARGUMENTS

A Postponed Proofs and Arguments

Here we give the proofs of some results.

A.1 Defining Equations for L
The defining equations are

ηρτ =
∑
µ,ν

Λµ
ρηµνΛ

ν
τ.

Written out we get

1 = (Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 (ρ = τ = 0)

−1 = (Λ0
1)

2 − (Λ1
1)

2 − (Λ2
1)

2 − (Λ3
1)

2 (ρ = τ = 1)

−1 = (Λ0
2)

2 − (Λ1
2)

2 − (Λ2
2)

2 − (Λ3
2)

2 (ρ = τ = 2)

−1 = (Λ0
3)

2 − (Λ1
3)

2 − (Λ2
3)

2 − (Λ3
3)

2 (ρ = τ = 3)

0 = Λ0
1Λ

0
0 −Λ

1
1Λ

1
0 −Λ

2
1Λ

2
0 −Λ

3
1Λ

3
0 (ρ = 1, τ = 0)

0 = Λ0
2Λ

0
0 −Λ

1
2Λ

1
0 −Λ

2
2Λ

2
0 −Λ

3
2Λ

3
0 (ρ = 2, τ = 0)

0 = Λ0
2Λ

0
1 −Λ

1
2Λ

1
1 −Λ

2
2Λ

2
1 −Λ

3
2Λ

3
1 (ρ = 2, τ = 1)

0 = Λ0
3Λ

0
0 −Λ

1
3Λ

1
0 −Λ

2
3Λ

2
0 −Λ

3
3Λ

3
0 (ρ = 3, τ = 0)

0 = Λ0
3Λ

0
1 −Λ

1
3Λ

1
1 −Λ

2
3Λ

2
1 −Λ

3
3Λ

3
1 (ρ = 3, τ = 1)

0 = Λ0
3Λ

0
2 −Λ

1
3Λ

1
2 −Λ

2
3Λ

2
2 −Λ

3
3Λ

3
2 (ρ = 3, τ = 2)

A.2 Classification of the Lorentz Group
Here we give a proof of Prop. 2.9. We restate the result for convenience.

Proposition A.1. For any Λ ∈ L↑
+ there exists �v ∈ R3, R ∈ SO(3) such that Λ =

Λv(�v)ΛR(R). The assignment Λ 7→ (�v, R) is continuous.

Proof. Let Λ = (Λµ
ν) be a Lorentz transformation.

Note that then ΛT is a Lorentz transformation as well, since ΛηΛTηΛ = Ληη = Λ,
so ΛηΛT = η−1 = η.

Define �v by �vi =
Λi

0

Λ0
0

.

Suppose first that �v = 0. Then ΛT =

[
1 0

�z R

]
for some 3 × 3 matrix R and some

vector �z ∈ R3. First, 1 = 〈e0, e0〉 =
〈
ΛTe0, Λ

Te0
〉
= 1 − �z2. We conclude that �z = 0.

By the defining relation we now have, that

x0y0 − (R�x)TR�y = x0y0 − �xT �y

for all x, y ∈ R4. Hence R preserves the inner product of R3 and since detR = detΛ = 1

we have that R ∈ SO(3).
Suppose now that �v 6= 0. Then

�v2 =

∑3
k=1(Λ

k
0)

2

Λ0
0

=
(Λ0

0)
2 − 1

(Λ0
0)

2
.

And
γ(�v) =

1√
1 − �v2

= Λ0
0.

So that
γ − 1

�v2
=

(Λ0
0)

2

Λ0
0 + 1

.

Then

Λ(−�v) =

[
γ −γ�vt

−γ�v I3 +
γ−1

�v2 �v�vt

]
=


Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ1
0

−Λ2
0

−Λ3
0

(
I3 +

Λi
0Λ

j
0

1+Λ0
0

)
ij

 .
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A.3 The Poincaré Lie Algebra Generators

Computing then the product Λ(−�v)Λ we get
Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ1
0

−Λ2
0

−Λ3
0

(
I3 +

Λi
0Λ

j
0

1+Λ0
0

)
ij

Λ =

[
1 0

�z R

]

for some R and �z since the top row is exactly given by the defining equations.
As in the �v = 0 case we conclude that �z = 0 and R ∈ SO(3). We conclude that we

have a decomposition as desired. The continuity of Λ 7→ �v is clear and the continuity
of Λ 7→ R follows.

A.3 The Poincaré Lie Algebra Generators
Since the generators are exactly the derivatives of the one-parameter subgroups at 0,
we get (by ignoring the components on which the generator are trivial, i.e. (a, 0) is
written as a.)

H0 =


−1

0

0

0

 , p1 =


0

1

0

0

 , p2 =


0

0

1

0

 , p3 =


0

0

0

1

 .

J1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , J2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , J3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 .

N1 =


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , N2 =


0 0 −1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , N3 =


0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

 .

A.4 The Poincaré Lie Algebra Bracket

Here we calculate the Poincaré Lie algebra bracket, see Eqn. (2).
Translations commute so we have that

[pj,pk] = [pj,H0] = 0

Also translations in the x0 direction commute with rotation so

[H0,pj] = 0

For an example of one of the remaining consider [p1, J2]. We need to compute the
product 


0

s

0

0

 , I4


0,


1 0 0 0

0 cos t 0 sin t

0 0 0 0

0 − sin t 0 cos t






0

−s

0

0

 , I4



=




0

s − s cos t

0

s sin t

 , . . .


Taking the derivative at s = t = 0 we get


0

0

0

1

 , 0

 = p3 =
∑
m

ε12mpm.

The rest are similar.
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